Skip to main content
Log in

Entanglement can Increase Asymptotic Rates of Zero-Error Classical Communication over Classical Channels

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

It is known that the number of different classical messages which can be communicated with a single use of a classical channel with zero probability of decoding error can sometimes be increased by using entanglement shared between sender and receiver. It has been an open question to determine whether entanglement can ever increase the zero-error communication rates achievable in the limit of many channel uses. In this paper we show, by explicit examples, that entanglement can indeed increase asymptotic zero-error capacity, even to the extent that it is equal to the normal capacity of the channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett C.H., Shor P.W.: Quantum information theory. IEEE Trans. Inf. Th 44, 2724–2742 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Horodecki R., Horodecki P., Horodecki M., Horodecki K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865–942 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bennett C.H., Brassard G., Crépeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Bennett C.H., Wiesner S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69(20), 2881–2884 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Bennett C.H., Shor P.W., Smolin J.A., Thapliyal A.V.: Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem. Information Theory, IEEE Transactions on 48(10), 2637–2655 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Polyanskiy Y., Poor H.V., Verdú S.: Channel coding rate in the finite blocklength regime. IEEE Transactions on Information Theory 56(5), 2307–2359 (2010)

    Article  Google Scholar 

  7. Körner J., Orlitsky A.: Zero-error information theory. IEEE Trans. Inf. Theory 44(6), 2207–2229 (1998)

    Article  MATH  Google Scholar 

  8. Cubitt, T.S., Leung, D., Matthews, W., Winter, A.: Improving zero-error classical communication with entanglement. Phys. Rev. Lett. 104(23), 230503 (2010)

    Google Scholar 

  9. Cubitt, T.S., Leung, D., Matthews, W., Winter, A.: Zero-error channel capacity and simulation assisted by non-local correlations. http://arxiv.org/abs/1003.3195v1 [math. NT], 2010

  10. Beigi, S.: Entanglement-assisted zero-error capacity is upper bounded by the Lovász theta function. http://arxiv.org/abs/1002.2488v1 [quant-ph], 2010

  11. Duan, R., Severini, S., Winter, A.: Zero-error communication via quantum channels, non-commutative graphs and a quantum Lovász \({\vartheta}\) function. http://arxiv.org/abs/1002.2514v2 [quant-ph], 2010

  12. Shannon, C.E.: A mathematical theory of communication. Bell Sys. Tech. J. 27, 379–423, 623–656 (1948)

  13. Shannon C.E.: The zero error capacity of a noisy channel. IRE Trans. Inform. Th. 2(3), 8–19 (1956)

    Article  MathSciNet  Google Scholar 

  14. Karp, R.: Reducibility among combinatorial problems. In: Miller, R., Thatcher, J. eds. Complexity of Computer Computations. London: Plenum Press, 1972, pp 85–103

  15. Lovász L.: On the Shannon capacity of a graph. IEEE Trans. Inf. Theory 25(1), 1–7 (1979)

    Article  MATH  Google Scholar 

  16. Haemers W.H.: On some problems of Lovász concerning the Shannon capacity of a graph. IEEE Trans. Inf. Theory 25(2), 231–232 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Haemers, W.H.: An upper bound for the Shannon capacity of a graph. Coll. Math. Soc. János Bolyai 25, 267–272 (1978) available from: http://econpapers.repec.org/RePEc:ner:tilbur:urn:nbn:nl:ui:12-402396, 1978

  18. Erdmann K., Wildon M.J.: Introduction to Lie algebras. Springer, Berlin-Heildelberg-Newyork (2006)

    MATH  Google Scholar 

  19. Saniga, M., Planat, M.R.P.: Multiple Qubits as Symplectic Polar Spaces of Order Two. Advanced Studies in Theoretical Physics 1, 1–4 (2007) available from: http://hal.archives-ouvertes.fr/hal-00121565/en/

  20. Planat, M., Saniga, M.: On the Pauli graphs of N-qudits. Quantum Information and Computation 8(1-2), 127–146 (2008), available from: http://hal.archives-ouvertes.fr/hal-00127731/en/

  21. Havlicek, H., Odehnal, B., Saniga, M.: Factor-Group-Generated Polar Spaces and (Multi-)Qudits. In: Symmetry, Integrability and Geometry: Methods and Applications, 5, 096 (15 pages) (2009), available from: http://hal.archives-ouvertes.fr/hal-00372071/en/, doi:10.3842/SIGMA.2009.096

  22. Peeters R.: Orthogonal representations over finite fields and the chromatic number of graphs. Combinatorica 16, 417–431 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dye R.H.: Partitions and their stabilizers for line complexes and quadrics. Annali di Matematica Pura ed Applicata 114, 173–194 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ball S., Bamberg J., Lavrauw M., Penttila T.: Symplectic spreads. Designs, Codes and Cryptography 32, 9–14 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bandyopadhyay S., Boykin O.P., Roychowdhury V., Vatan F.: A new proof for the existence of mutually unbiased bases. Algorithmica 34, 512–528 (2008)

    MathSciNet  Google Scholar 

  26. Lawrence J., Brukner Č., Zeilinger A.: Mutually unbiased binary observable sets on N qubits. Phys. Rev. A 65(3), 032320 (2002)

    Article  ADS  Google Scholar 

  27. Cerchiai, B.L., van Geemen, B.: From qubits to E 7. http://arxiv.org/abs/1003.4255v1 [quant-ph], 2010

  28. Purbhoo K.: Compression of root systems and the E-sequence. Elec. J. Combinatorics 15(1), R115 (2008)

    MathSciNet  Google Scholar 

  29. Shannon, C.E., Gallager, R.G., Berlekamp, E.R.: Lower bounds to error probability for coding on discrete memoryless channels. I. Information and Control 10(1), 65–103 (1967)

    Google Scholar 

  30. Humphreys J.E.: Reflection groups and Coxeter groups. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  31. Panigrahi P.: The diameters graph of the root system E 8 is uniquely geometrisable. Geometriae Dedicata 78, 121–141 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ruuge A.E.: Exceptional and non-crystallographic root systems and the Kochen–Specker theorem. J. Phys. A: Math. Theor. 40(11), 2849–2859 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Prevedel R., Lu Y., Matthews W., Kaltenbaek R., Resch K.J.: Entanglement-enhanced classical communication over a noisy classical channel. Phys. Rev. Lett. 106, 110505 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Matthews.

Additional information

Communicated by M. B. Ruskai

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leung, D., Mancinska, L., Matthews, W. et al. Entanglement can Increase Asymptotic Rates of Zero-Error Classical Communication over Classical Channels. Commun. Math. Phys. 311, 97–111 (2012). https://doi.org/10.1007/s00220-012-1451-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1451-x

Keywords

Navigation