Skip to main content
Log in

Local Asymptotic Normality for Finite Dimensional Quantum Systems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Previous results on local asymptotic normality (LAN) for qubits [16, 19] are extended to quantum systems of arbitrary finite dimension d. LAN means that the quantum statistical model consisting of n identically prepared d-dimensional systems with joint state \({\rho^{\otimes n}}\) converges as n → ∞ to a statistical model consisting of classical and quantum Gaussian variables with fixed and known covariance matrix, and unknown means related to the parameters of the density matrix ρ. Remarkably, the limit model splits into a product of a classical Gaussian with mean equal to the diagonal parameters, and independent harmonic oscillators prepared in thermal equilibrium states displaced by an amount proportional to the off-diagonal elements. As in the qubits case [16], LAN is the main ingredient in devising a general two step adaptive procedure for the optimal estimation of completely unknown d-dimensional quantum states. This measurement strategy shall be described in a forthcoming paper [18].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armen M.A., Au J.K., Stockton J.K., Doherty A.C., Mabuchi H.: Adaptive Homodyne Measurement of Optical Phase. Phys. Rev. Lett. 89, 133602 (2002)

    Article  ADS  Google Scholar 

  2. Artiles L., Gill R., Guţă M.: An invitation to quantum tomography. J. Royal Statist. Soc. B (Methodological) 67, 109–134 (2005)

    Article  MATH  Google Scholar 

  3. Audenaert K.M.R., Nussbaum M., Szkola A., Verstraete F.: Asymptotic Error Rates in Quantum Hypothesis Testing. Commun. Math. Phys. 279, 251–283 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Bagan E., Baig M., Munoz-Tapia R.: Optimal Scheme for Estimating a Pure Qubit State via Local Measurements. Phys. Rev. Lett. 89, 277904 (2002)

    Article  ADS  Google Scholar 

  5. Bagan E., Ballester M.A., Gill R.D., Monras A., Munõz-Tapia R.: Optimal full estimation of qubit mixed states. Phys. Rev. A 73, 032301 (2006)

    Article  ADS  Google Scholar 

  6. Barndorff-Nielsen O.E., Gill R., Jupp P.E.: On quantum statistical inference (with discussion). J. R. Statist. Soc. B 65, 775–816 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Belavkin V.P.: Optimal multiple quantum statistical hypothesis testing. Stochastics 1, 315–345 (1975)

    MATH  MathSciNet  Google Scholar 

  8. Belavkin V.P.: Generalized Heisenberg uncertainty relations, and efficient measurements in quantum systems. Theor. Math. Phys. 26, 213–222 (1976)

    Article  MathSciNet  Google Scholar 

  9. Cirac J.I., Ekert A.K., Macchiavello C.: Optimal Purification of Single Qubits. Phys. Rev. Lett. 82, 4344 (1999)

    Article  ADS  Google Scholar 

  10. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions. vol. II. New York-Toronto-London: McGraw-Hill, 1953

  11. Fulton W.: Young Tableaux, with Applications to Representation Theory and Geometry. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  12. Fulton W., Harris J.: Representation Theory, A First Course. Springer Verlag, New York (1991)

    MATH  Google Scholar 

  13. Gill, R.D.: Asymptotic information bounds in quantum statistics. In: Quantum Stochatics and Information: Statstics Filtering and Control, Belavin, V.P., Guta, M. (eds.), River Edge, NJ: World Scientific, 2008

  14. Gill R.D., Massar S.: State estimation for large ensembles. Phys. Rev. A 61, 042312 (2000)

    Article  ADS  Google Scholar 

  15. Goodman R., Wallach N.R.: Representations and Invariants of the Classical Groups. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  16. Guţă., Janssens B., Kahn J.: Optimal estimation of qubit states with continuous time measurements. Commun. Math. Phys. 277, 127–160 (2008)

    ADS  Google Scholar 

  17. Guţă M., Jençová A.: Local asymptotic normality in quantum statistics. Commun. Math. Phys. 276, 341–379 (2007)

    Article  ADS  Google Scholar 

  18. Guţă, M., Kahn, J.: Optimal estimation of d-dimensional quantum states. In preparation

  19. Guţă M., Kahn J.: Local asymptotic normality for qubit states. Phys. Rev. A, 052108 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  20. Hannemann T., Reiss D., Balzer C., Neuhauser W., Toschek P.E., Wunderlich C.: Self-learning estimation of quantum states. Phys. Rev. A 65, 050303 (2002)

    Article  ADS  Google Scholar 

  21. Hayashi, M.: Presentations at MaPhySto and QUANTOP Workshop on Quantum Measurements and Quantum Stochastics, Aarhus, 2003, and Special Week on Quantum Statistics, Isaac Newton Institute for Mathematical Sciences, Cambridge, 2004

  22. Hayashi, M.: Quantum estimation and the quantum central limit theorem. Bulletin of the Mathematical Society of Japan 55, 368–391 (2003) (in Japanese; Translated into English in quant-ph/0608198)

  23. Hayashi, M. (eds): Asymptotic Theory of Quantum Statistical Inference: Selected Papers. World Scientific, River Edge, NJ (2005)

    MATH  Google Scholar 

  24. Hayashi M.: Quantum Information. Springer-Verlag, Berlin-Heidelberg (2006)

    Google Scholar 

  25. Hayashi, M., Matsumoto, K.: Statistical Model with Measurement Degree of Freedom and Quantum Physics. In: Hayashi, M. ed., Asymptotic theory of quantum statistical inference: selected papers, River Edge, NJ: World Scientific, 2005, pp. 162–170 (English translation of a paper in Japanese published in Surikaiseki Kenkyusho Kokyuroku, vol. 35, pp. 7689–7727, 2002)

  26. Hayashi, M., Matsumoto, K.: Asymptotic performance of optimal state estimation in quantum two level system. http://arxiv.org/abs/quant-ph/0411073v2, 2006

  27. Helstrom C.W.: Quantum detection and estimation theory. J. Stat. Phys. 1, 231–252 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  28. Holevo A.S.: Probabilistic and Statistical Aspects of Quantum Theory. North-Holland, Amsterdam (1982)

    MATH  Google Scholar 

  29. Kahn, J.: Quantum Local Asymptotic Normality and other Questions in Quantum Statistics. Ph.D. thesis, University of Leiden, 2008

  30. Keyl M., Werner R.F.: Estimating the spectrum of a density operator. Phys. Rev. A 64, 052311 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  31. Le Cam L.: Asymptotic Methods in Statistical Decision Theory. Springer Verlag, New York (1986)

    MATH  Google Scholar 

  32. Massar S., Popescu S.: Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74, 1259–1263 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. Matsumoto, K.: Unpublished manuscript

  34. Ohya M., Petz D.: Quantum Entropy and its Use. Springer Verlag, Berlin-Heidelberg (2004)

    Google Scholar 

  35. Paris, M.G.A., Řeháček, J. (eds.): Quantum State Estimation, Lecture Notes in Phys. vol. 649, New York: Springer, 2004

  36. Petz D.: Sufficient subalgebras and the relative entropy of states of a von Neumann algebra. Commun. Math. Phys. 105, 123–131 (1986)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  37. Petz D.: An Invitation to the Algebra of Canonical Commutation Relations. Leuven University Press, Leuven (1990)

    MATH  Google Scholar 

  38. Petz D., Jencova A.: Sufficiency in quantum statistical inference. Commun. Math. Phys. 263, 259–276 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  39. Schiller S., Breitenbach G., Pereira S.F., Müller T., Mlynek J.: Quantum statistics of the squeezed vacuum by measurement of the density matrix in the number state representation. Phys. Rev. Lett. 77, 2933–2936 (1996)

    Article  ADS  Google Scholar 

  40. Smith G.A., Silberfarb A., Deutsch I.H., Jessen P.S.: Efficient Quantum-State Estimation by Continuous Weak Measurement and Dynamical Control. Phys. Rev. Lett. 97, 180403 (2006)

    Article  ADS  Google Scholar 

  41. Strasser H.: Mathematical Theory of Statistics. Berlin-New York, De Gruyter (1985)

    MATH  Google Scholar 

  42. Torgersen E.: Comparison of Statistical Experiments. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  43. van der Vaart A.: Asymptotic Statistics. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  44. van der Vaart A., Wellner J.A.: Weak Convergence and Empirical Processes. Springer, New York (1996)

    MATH  Google Scholar 

  45. Vidal G., Latorre J.I., Pascual P., Tarrach R.: Optimal minimal measurements of mixed states. Phys. Rev. A 60, 126 (1999)

    Article  ADS  Google Scholar 

  46. Wald A.: Statistical Decision Functions. John Wiley (&) Sons, New York (1950)

    MATH  Google Scholar 

  47. Yuen H., Kennedy R., Lax M.: Optimum testing of multiple hypotheses in quantum detection theory. IEEE Trans. Inform. Theory 21, 125–134 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  48. Yuen H.P., Lax M.: Multiple-parameter quantum estimation and measurement of non-selfadjoint observables. IEEE Trans. Inform. Theory 19, 740 (1973)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mădălin Guţă.

Additional information

Communicated by M. B. Ruskai

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kahn, J., Guţă, M. Local Asymptotic Normality for Finite Dimensional Quantum Systems. Commun. Math. Phys. 289, 597–652 (2009). https://doi.org/10.1007/s00220-009-0787-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0787-3

Keywords

Navigation