Skip to main content
Log in

The Lieb-Liniger Model as a Limit of Dilute Bosons in Three Dimensions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that the Lieb-Liniger model for one-dimensional bosons with repulsive δ-function interaction can be rigorously derived via a scaling limit from a dilute three-dimensional Bose gas with arbitrary repulsive interaction potential of finite scattering length. For this purpose, we prove bounds on both the eigenvalues and corresponding eigenfunctions of three-dimensional bosons in strongly elongated traps and relate them to the corresponding quantities in the Lieb-Liniger model. In particular, if both the scattering length a and the radius r of the cylindrical trap go to zero, the Lieb-Liniger model with coupling constant g ~ a/r 2 is derived. Our bounds are uniform in g in the whole parameter range 0 ≤ g ≤ ∞, and apply to the Hamiltonian for three-dimensional bosons in a spectral window of size ~ r −2 above the ground state energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baumgartner B., Solovej J.P., Yngvason J.: Atoms in Strong Magnetic Fields: The High Field Limit at Fixed Nuclear Charge. Commun. Math. Phys. 212, 703–724 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Bergeman T., Moore M.G., Olshanii M.: Atom-Atom Scattering under Cylindrical Harmonic Confinement: Numerical and Analytic Studies of the Confinement Induced Resonance. Phys. Rev. Lett. 91, 163201 (2003)

    Article  ADS  Google Scholar 

  3. Bloch, I., Dalibard, J., Zwerger, W.: Many-Body Physics with Ultracold Gases. http://arxiv.org/list/0704.3011, 2007

  4. Brummelhuis, R., Duclos, P.: Effective Hamiltonians for atoms in very strong magnetic fields. J. Math. Phys. 47, 033501 (2006); On the One-Dimensional Behaviour of Atoms in Intense Homogeneous Magnetic Fields. In: Partial Differential Equations and Spectral Theory, PDE2000 Conference in Clausthal, Germany, Demuth, M., Schulze, B.-W. (eds.), Basel: Birkhäuser 2001, pp. 25–35

  5. Dettmer S. et al.: Observation of Phase Fluctuations in Elongated Bose-Einstein Condensates. Phys. Rev. Lett. 87, 160406 (2001)

    Article  ADS  Google Scholar 

  6. Dunjko V., Lorent V., Olshanii M.: Bosons in Cigar-Shaped Traps: Thomas-Fermi Regime, Tonks- Girardeau Regime, and In Between. Phys. Rev. Lett. 86, 5413–5416 (2001)

    Article  ADS  Google Scholar 

  7. Esteve J. et al.: Observations of Density Fluctuations in an Elongated Bose Gas: Ideal Gas and Quasicondensate Regimes. Phys. Rev. Lett. 96, 130403 (2006)

    Article  ADS  Google Scholar 

  8. Girardeau M.: Relationship between Systems of Impenetrable Bosons and Fermions in One Dimension. J. Math. Phys. 1, 516–523 (1960)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Jackson A.D., Kavoulakis G.M.: Lieb Mode in a Quasi-One-Dimensional Bose-Einstein Condensate of Atoms. Phys. Rev. Lett. 89, 070403 (2002)

    Article  ADS  Google Scholar 

  10. Kinoshita T., Wenger T., Weiss D.S.: Observation of a One-Dimensional Tonks-Girardeau Gas. Science 305, 1125–1128 (2004)

    Article  ADS  Google Scholar 

  11. Lieb E.H.: Exact Analysis of an Interacting Bose Gas. II. The Excitation Spectrum. Phys. Rev. 130, 1616–1624 (1963)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Lieb E.H., Liniger W.: Exact Analysis of an Interacting Bose Gas. I. The General Solution and the Ground State. Phys. Rev. 130, 1605–1616 (1963)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Lieb, E.H., Loss, M.: Analysis. Second edition, Providene, RI: American Math Soc. 2001

  14. Lieb, E.H., Seiringer, R., Solovej, J.P., Yngvason, J.: The Mathematics of the Bose Gas and its Condensation. Oberwolfach Seminars, Vol. 34, Basel-Boston: Birkhäuser 2005

  15. Lieb E.H., Seiringer R., Yngvason J.: Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional. Phys. Rev. A. 61, 043602 (2000)

    Article  ADS  Google Scholar 

  16. Lieb E.H., Seiringer R., Yngvason J.: One-dimensional Bosons in Three-dimensional Traps. Phys. Rev. Lett. 91, 150401 (2003)

    Article  ADS  Google Scholar 

  17. Lieb E.H., Seiringer R., Yngvason J.: One-Dimensional Behavior of Dilute, Trapped Bose Gases. Commun. Math. Phys. 244, 347–393 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Lieb E.H., Yngvason J.: Ground State Energy of the Low Density Bose Gas. Phys. Rev. Lett. 80, 2504–2507 (1998)

    Article  ADS  Google Scholar 

  19. Moritz H., Stöferle T., Köhl M., Esslinger T.: Exciting Collective Oscillations in a Trapped 1D Gas. Phys. Rev. Lett. 91, 250402 (2003)

    Article  ADS  Google Scholar 

  20. Moritz H., Stöferle T., Günter K., Köhl M., Esslinger T.: Confinement Induced Molecules in a 1D Fermi Gas. Phys. Rev. Lett. 94, 210401 (2005)

    Article  ADS  Google Scholar 

  21. Olshanii M.: Atomic Scattering in the Presence of an External Confinement and a Gas of Impenetrable Bosons. Phys. Rev. Lett. 81, 938–941 (1998)

    Article  ADS  Google Scholar 

  22. Olsahnii M., Dunjko V.: Short-Distance Correlation Properties of the Lieb-Liniger System and Momentum Distributions of Trapped One-Dimensional Atomic Gases. Phys. Rev. Lett. 91, 090401 (2003)

    Article  ADS  Google Scholar 

  23. Petrov D.S., Shlyapnikov G.V., Walraven J.T.M.: Regimes of Quantum Degeneracy in Trapped 1D Gases. Phys. Rev. Lett. 85, 3745–3749 (2000)

    Article  ADS  Google Scholar 

  24. Petrov D.S., Gangardt D.M., Shlyapnikov G.V.: Low-dimensional trapped gases. J. Phys. IV. 116, 5–46 (2004)

    Article  Google Scholar 

  25. Reed M., Simon B.: Methods of Modern Mathematical Physics II Fourier Analysis, Self-Adjointness. Academic Press, New York (1975)

    MATH  Google Scholar 

  26. Richard S. et al.: Momentum Spectroscopy of 1D Phase Fluctuations in Bose-Einstein Condensates. Phys. Rev. Lett. 91, 010405 (2003)

    Article  ADS  Google Scholar 

  27. Temple G.: The theory of Rayleigh’s Principle as Applied to Continuous Systems. Proc. Roy. Soc. London A. 119, 276–293 (1928)

    Article  ADS  Google Scholar 

  28. Tolra B.L. et al.: Observation of Reduced Three-Body Recombination in a Correlated 1D Degenerate Bose Gas. Phys. Rev. Lett. 92, 190401 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Seiringer.

Additional information

Communicated by B. Simon

©2008 by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seiringer, R., Yin, J. The Lieb-Liniger Model as a Limit of Dilute Bosons in Three Dimensions. Commun. Math. Phys. 284, 459–479 (2008). https://doi.org/10.1007/s00220-008-0521-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0521-6

Keywords

Navigation