Skip to main content
Log in

Renormalization Proof for Massive \(\phi_4^4\) Theory on Riemannian Manifolds

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we present an inductive renormalizability proof for massive \(\phi_4^4\) theory on Riemannian manifolds, based on the Wegner-Wilson flow equations of the Wilson renormalization group, adapted to perturbation theory. The proof goes in hand with bounds on the perturbative Schwinger functions which imply tree decay between their position arguments. An essential prerequisite is precise bounds on the short and long distance behaviour of the heat kernel on the manifold. With the aid of a regularity assumption (often taken for granted) we also show that for suitable renormalization conditions the bare action takes the minimal form, that is to say, there appear the same counterterms as in flat space, apart from a logarithmically divergent one which is proportional to the scalar curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barvinsky A.O. and Vilkovisky G.A. (1985). The generalized Schwinger-De Witt technique in gauge theories and quantum gravity. Phys. Rep. 119: 1–74

    Article  ADS  Google Scholar 

  2. Bros J., Epstein H. and Moschella U. (2002). Towards a General Theory of Quantized Fields on the Anti-de Sitter Space-Time. Commun. Math. Phys. 231: 481–528

    Article  MATH  ADS  Google Scholar 

  3. Brunetti R., Fredenhagen K. and Verch R. (2003). The Generally Covariant Locality Principle - A New Paradigm for Local Quantum Field Theory. Commun. Math. Phys. 237: 31–68

    MATH  ADS  Google Scholar 

  4. Birrell N.D. and Davies P.C.W. (1982). Quantum Fields in Curved Space. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  5. Birke L. and Fröhlich J. (2002). KMS, etc. Rev. Math. Phys. 14: 829–873

    Article  MATH  Google Scholar 

  6. Birrell N.D. (1980). Momentum space renormalization of \(\lambda \varphi^4\) in curved space-time. J. Phys. A 13: 569–584

    Article  ADS  Google Scholar 

  7. Bunch T.S., Panangaden P. and Parker L. (1980). On renormalization of \(\lambda \varphi^4\) field theory in curved space-time: I. J. Phys. A 13: 901–918

    Article  ADS  Google Scholar 

  8. Brunetti R. and Fredenhagen K. (2000). Microlocal Analysis and Interacting Quantum Field Theories: Renormalization on Physical Backgrounds. Commun. Math. Phys. 208: 623–661

    Article  MATH  ADS  Google Scholar 

  9. Bunch T.S. (1981). Local Momentum Space and Two-loop Renormalization of \(\lambda \varphi^4\) field Theory in Curved Space-Time. Gen. Rel. Grav. 13: 711–723

    Article  MATH  Google Scholar 

  10. Bunch T.S. (1981). BPHZ Renormalization of \(\lambda \varphi^4\) field Theory in Curved Space-Time. Ann. Phys. (N.Y.) 131: 118–148

    Article  ADS  Google Scholar 

  11. Bunch T.S. and Panangaden P. (1980). On renormalization of \(\lambda \varphi^4\)field theory in curved space-time: II. J. Phys. A 13: 919–932

    Article  ADS  Google Scholar 

  12. Bunch T.S. and Parker L. (1979). Feynman propagator in curved space-time: A momentum-space representation. Phys. Rev. D 20: 2499–2510

    Article  ADS  Google Scholar 

  13. Chavel I. (1993). Riemannian Geometry: A Modern Introduction. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  14. Cheng S.Y., Li P. and Yau S.-T. (1981). On the upper estimate of the heat kernel of a complete Riemannian manifold. Am. J. Math. 103: 1021–1063

    Article  MATH  Google Scholar 

  15. Davies E.B. (1989). Heat kernels and spectral theory. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  16. Davies E.B. (1988). Gaussian upper bounds for the heat kernels of some second order operators on Riemannian manifolds. J. Funct. Anal. 80: 16–32

    Article  MATH  Google Scholar 

  17. Davies E.B. (1989). Pointwise bounds on the space and time derivatives of heat kernels. J. Operator Theory 21: 367–378

    MATH  Google Scholar 

  18. Grigor’yan A. (1999). Estimates of heat kernels on Riemannian manifolds. In: Davies, E.B. and Safarov, Yu. (eds) Spectral Theory and Geometry, London Math. Soc. Lecture Notes 273, pp 140–225. Cambridge Univ. Press, Cambridge

    Google Scholar 

  19. Hollands S. and Wald R.M. (2001). Local Wick polynomials and time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 223: 289–326

    Article  MATH  ADS  Google Scholar 

  20. Hollands S. and Wald R.M. (2002). Existence of Local Covariant Time Ordered Products of Quantum Fields in Curved Spacetime. Commun. Math. Phys. 231: 309–345

    Article  MATH  ADS  Google Scholar 

  21. Hollands S. and Wald R.M. (2003). On the Renormalization Group in Curved Spacetime. Commun. Math. Phys. 237: 123–160

    MATH  ADS  Google Scholar 

  22. Keller G., Kopper Ch. and Salmhofer M. (1992). Perturbative renormalization and effective Lagrangians in \(\phi_4^4\). Helv. Phys. Acta 156: 32–52

    Google Scholar 

  23. Kopper, Ch.: Renormierungstheorie mit Flussgleichungen Aachen, Shaker Verlag, 1998

  24. Kopper, Ch.: Renormalization Theory based on Flow equations. Lecture in honour of Jacques Bros. In: Rigorous Quantum Field Theory, Progress in Mathematics, Basel, Birkhäuser, 2006

  25. Li P. and Yau S.-T. (1986). On the parabolic kernel of the Schrödinger operator. Acta Math. 156: 153–201

    Article  Google Scholar 

  26. Lüscher M. (1982). Dimensional Regularization in the Presence of Large Background Fields. Ann. Phys. (N.Y.) 142: 359–392

    Article  ADS  Google Scholar 

  27. Müller V.F. (2003). Perturbative Renormalization by Flow Equations. Rev. Math. Phys. 15: 491–557

    Article  MATH  Google Scholar 

  28. Nelson B.L. and Panangaden P. (1982). Scaling behavior of interacting quantum fields in curved spacetime. Phys. Rev. D 25: 1019–1027

    Article  ADS  Google Scholar 

  29. Polchinski J. (1984). Renormalization and Effective Lagrangians. Nucl. Phys. B 231: 269–295

    Article  ADS  Google Scholar 

  30. Salmhofer M. (1998). Renormalization - An Introduction. Springer-Verlag, Berlin-Heidelberg-New York

    Google Scholar 

  31. Souplet P. and Zhang Q. (2006). Sharp gradient estimate and Yau’s Liouville theorem for the heat equation on noncompact manifolds. Bull. London Math. Soc. 38(6): 14045–1053

    Article  Google Scholar 

  32. Taylor, M.E.: Partial Differential Equations I. AMS 115. Springer-Verlag, 1996

  33. Varopoulos N.Th. (1989). Small time Gaussian estimates of heat diffusion kernel. I. The semigroup technique. Bull. Sc. Math., 2 Série 113: 253–277

    MATH  Google Scholar 

  34. Willmore T.J. (1996). Riemannian Geometry. Oxford University Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Kopper.

Additional information

Communicated by J.Z. Imbrie

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopper, C., Müller, V.F. Renormalization Proof for Massive \(\phi_4^4\) Theory on Riemannian Manifolds. Commun. Math. Phys. 275, 331–372 (2007). https://doi.org/10.1007/s00220-007-0297-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0297-0

Keywords

Navigation