Skip to main content
Log in

Limit Theorems in the Stadium Billiard

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove that the Birkhoff sums for ``almost every'' relevant observable in the stadium billiard obey a non-standard limit law. More precisely, the usual central limit theorem holds for an observable if and only if its integral along a one-codimensional invariant set vanishes, otherwise a normalization is needed. As one of the two key steps in the argument, we obtain a limit theorem that holds in Young towers with exponential return time statistics in general, an abstract result that seems to be applicable to many other situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aaronson, J.: An introduction to infinite ergodic theory. Volume 50 of Mathematical Surveys and Monographs. Providence RI: American Mathematical Society, 1997

  2. Aaronson, J., Denker, M.: A local limit theorem for stationary processes in the domain of attraction of a normal distribution. In N. Balakrishnan, I.A. Ibragimov, V.B. Nevzorov, eds., Asymptotic methods in probability and statistics with applications. Papers from the international conference, St. Petersburg, Russia, 1998, Basel: Birkhäuser, 2001, pp. 215–224

  3. Bunimovich, L.: On the ergodic properties of nowhere dispersing billiards. Commun. Math. Phys. 65, 295–312 (1979)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Baladi, V., Young, L.-S.: On the spectra of randomly perturbed expanding maps. Commun. Math. Phys. 156, 355–385 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Chernov, N.: Entropy, Lyapunov exponents and mean free path for billiards. J. Stat. Phys. 88, 1–29 (1997)

    MATH  MathSciNet  Google Scholar 

  6. Chernov, N.: Decay of correlations and dispersing billiards. J. Stat. Phys. 94, 513–556 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chernov, N., Zhang, H.: Billiards with polynomial mixing rates. Nonlinearity 18, 1527–1554 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Eagleson, G.K.: Some simple conditions for limit theorems to be mixing. Teor. Verojatnost. i Primenen. 21(3), 53–660 (1976)

    MathSciNet  Google Scholar 

  9. Gordin, M.: The central limit theorem for stationary processes. Dokl. Akad. Nauk SSSR 188, 739–741 (1969)

    MATH  MathSciNet  Google Scholar 

  10. Gouëzel, S.: Statistical properties of a skew-product with a curve of neutral points. http://name.math.Univ-rennes1.fr/Sebastien.gouezel/articles/skewproduct. pdf, 2004

  11. Gouëzel, S.: Central limit theorem and stable laws for intermittent maps. Probab. Theory and Rel. Fields 128, 82–122 (2004)

    Article  MATH  Google Scholar 

  12. Gouëzel, S.: Berry-Esseen theorem and local limit theorem for non uniformly expanding maps. http://name.math.Univ-rennes1.fr/Sebastien.gouezel/articles/vitesse-TCL.pdf, Annales de l'IHP Probabilités et Statistiques, 41, 997–1024

  13. Gouëzel, S.: Regularity of coboundaries for non uniformly expanding Markov maps. Proc. Am. Math. Soc. 134(2), 391–401 (2005)

    Article  Google Scholar 

  14. Hennion, H.: Sur un théorème spectral et son application aux noyaux lipschitziens. Proc. Amer. Math. Soc. 118, 627–634 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kachurovskii, A.G.: Rates of convergence in ergodic theorems. Russian Math. Surveys 51, 653–703 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Keller, G., Liverani, C.: Stability of the spectrum for transfer operators. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28(1), 141–152 (1999)

    Google Scholar 

  17. Machta, J.: Power law decay of correlations in a billiard problem. J. Statist. Phys. 32, 555–564 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  18. Markarian, R.: Billiards with polynomial decay of correlations. Ergodic Theory Dynam. Systems 24, 177–197 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Melbourne, I., Török, A.: Statistical limit theorems for suspension flows. Israel J. Math. 144, 191–210, 2004

    Google Scholar 

  20. Szász, D., Varjú, T.: Local limit theorem for the Lorentz process and its recurrence on the plane. Ergodic Theory Dynam. Systems 24, 257–278 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Szász, D., Varjú, T.: Markov towers and stochastic properties of billiards. In: Modern dynamical systems and applications, Cambridge: Cambridge University Press, 2004, pp. 433–445

  22. Szász, D., Varjú, T.: Limit laws and recurrence for the planar Lorentz process with infinite horizon. Preprint, 2005

  23. Young, L.-S.: Statistical properties of dynamical systems with some hyperbolicity. Ann. Math. (2) 147, 585–650 (1998)

    Google Scholar 

  24. Young, L.-S.: Recurrence times and rates of mixing. Israel J. Math. 110, 153–188 (1999)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Bálint.

Additional information

Communicated by G.Gallavotti

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bálint, P., Gouëzel, S. Limit Theorems in the Stadium Billiard. Commun. Math. Phys. 263, 461–512 (2006). https://doi.org/10.1007/s00220-005-1511-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-005-1511-6

Keywords

Navigation