Skip to main content
Log in

A Statistical Approach to the Asymptotic Behavior of a Class of Generalized Nonlinear Schrödinger Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A statistical relaxation phenomenon is studied for a general class of dispersive wave equations of nonlinear Schrödinger-type which govern non-integrable, non-singular dynamics. In a bounded domain the solutions of these equations have been shown numerically to tend in the long-time limit toward a Gibbsian statistical equilibrium state consisting of a ground-state solitary wave on the large scales and Gaussian fluctuations on the small scales. The main result of the paper is a large deviation principle that expresses this concentration phenomenon precisely in the relevant continuum limit. The large deviation principle pertains to a process governed by a Gibbs ensemble that is canonical in energy and microcanonical in particle number. Some supporting Monte-Carlo simulations of these ensembles are also included to show the dependence of the concentration phenomenon on the properties of the dispersive wave equation, especially the high frequency growth of the dispersion relation. The large deviation principle for the process governed by the Gibbs ensemble is based on a large deviation principle for Gaussian processes, for which two independent proofs are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bidegaray,~B.: Invariant measures for some partial differential equations. Physica D 82, 340–364 (1995)

    MathSciNet  MATH  Google Scholar 

  2. Binder,~K., Heermann,~D.W.: Monte Carlo Simulation in Statistical Physics. Fourth edition. Springer Series in Solid-State Sciences, Vol. 80, Berlin: Springer-Verlag, 2002

  3. Birkhoff,~G., Rota,~G.-C.: Ordinary Differential Equations. Second edition. Waltham: Blaisdell Publishing Co., 1969

  4. Biskamp,~D.: Nonlinear Magnetohydrodynamics. Cambridge Monographs in Plasma Physics. Cambridge: Cambridge Univ. Press,1993

  5. Bolthausen,~E.: On the probability of large deviations in Banach spaces. Ann. Probab. 12, 427–435 (1984)

    MathSciNet  MATH  Google Scholar 

  6. Boucher,~C., Ellis,~R.S., Turkington,~B.: Derivation of maximum entropy principles in two-dimensional turbulence via large deviations. J. Stat. Phys 98, 1235–1278 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bourgain,~J.: Periodic nonlinear Schrödinger equation and invariant measures. Commun. Math. Phys. 166, 1–26 (1994)

    MathSciNet  MATH  Google Scholar 

  8. Bouchet,~F., Sommeria,~J.: Emergence of intense jets and Jupiter’s Great Red Spot as maximum-entropy structures. J. Fluid Mech. 464, 165–207 (2002)

    Article  MATH  Google Scholar 

  9. Cai,~D., Majda,~A.J., McLaughlin,~D.W., Tabak,~E.G.: Spectral bifurcations in dispersive wave turbulence. Proc. Nat. Acad. Sci. 96, 14216–14221 (1999)

    Article  MATH  Google Scholar 

  10. Cai,~D., McLaughlin,~D.W.: Chaotic and turbulent behavior of unstable 1D nonlinear dispersive waves. J. Math. Phys. 41, 4125–4153 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dembo,~A., Zeitouni,~O.: Large Deviations Techniques and Applications. Second edition. New York: Spring-Verlag, 1998

  12. DiBattista,~M.T., Majda,~A.J., Grote,~M.J.: Meta-stability of equilibrium statistical structures for prototype geophysical flows with damping and driving. Physica D 151, 271–304 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dowling,~T.E.: Dynamics of Jovian atmospheres. Ann. Rev. Fluid Mech. 27, 293–334 (1995)

    Article  Google Scholar 

  14. Dupuis,~P., Ellis,~R.S.: A Weak Convergence Approach to the Theory of Large Deviations. New York: John Wiley & Sons, 1997

  15. Dyachenko,~S., Zakharov,~V.E., Pushkarev,~A.N., Shvets,~V.F., Yan’kov,~V.V.: Soliton turbulence in nonintegrable wave systems. Soviet Phys. JETP 69, 1144–1147 (1989)

    Google Scholar 

  16. Ellis,~R.S.: Entropy, Large Deviations and Statistical Mechanics. New York: Springer-Verlag, 1985

  17. Ellis,~R.S., Haven,~K., Turkington,~B.: Large deviation principles and complete equivalence and nonequivalence results for pure and mixed ensembles. J. Stat. Phys. 101, 999–1064 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gikhman,~I.I., Skorohod,~A.V.: The Theory of Stochastic Processes I. Trans. by S. Kotz, Berlin: Springer-Verlag, 1974

  19. Hasegawa,~A.: Self-organization processes in continuous media. Adv. Phys. 34, 1–42 (1985)

    MathSciNet  MATH  Google Scholar 

  20. Isichenko,~M.B., Gruzinov,~A.V.: Isotopological relaxation, coherent structures, and Gaussian turbulence in two-dimensional magnetohydrodynamics. Phys. Plasmas 1, 1802–1816 (1994)

    Article  MathSciNet  Google Scholar 

  21. Itô,~K., McKean,~H.P.: Diffusion Processes and Their Sample Paths. New York/Berlin: Academic Press/Springer Verlag, 1965

  22. Jordan,~R., Josserand,~C.: Self-organization in nonlinear wave turbulence. Phys. Rev. E 61, 1527–1539 (2000)

    Article  MathSciNet  Google Scholar 

  23. Jordan,~R., Josserand,~C.: Statistical equilibrium states for the nonlinear Schrödinger equation. Math. Comp. Simulation 55, 433–447 (2001)

    Article  MATH  Google Scholar 

  24. Jordan,~R., Turkington,~B.: Ideal magnetofluid turbulence in two dimensions J. Stat. Phys. 87, 661–695 (1997)

    MathSciNet  MATH  Google Scholar 

  25. Jordan,~R., Turkington,~B., Zirbel,~C.L.: A mean-field statistical theory for the nonlinear Schrödinger equation. Physica D 137, 353–378 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kevrekidis,~P.G., Rasmussen,~K.O., Bishop,~A.R.: The discrete nonlinear Schrödinger equation: A survey of recent results. Int. J. Mod. Phys. B. 15, 2833–2900 (2001)

    Article  Google Scholar 

  27. Lebowitz,~J.L., Rose,~H.A., Speer,~E.R.: Statistical mechanics of a nonlinear Schrödinger equation. J. Stat. Phys., 50, 657–687 (1988)

    Google Scholar 

  28. Majda,~A.J., McLaughlin,~D.W., Tabak,~E.G.: A one-dimensional model for dispersive wave turbulence. J. Nonlinear Sci. 7, 9–44 (1997)

    MathSciNet  MATH  Google Scholar 

  29. Marcus,~P.S.: Jupiter’s Great Red Spot and other vortices. Annual Rev. Astronomy and Astrophys. 31, 523–573 (1993)

    Article  Google Scholar 

  30. McKean,~H.P.: Statistical mechanics of nonlinear wave equations IV. Cubic Schrödinger. Commun. Math. Phys.168, 479–491 (1995)

    Google Scholar 

  31. Rasmussen,~J.J., Rypdal,~K.: Blow-up in nonlinear Schroedinger equations–I: A general review. Physica Scripta 33, 481–504 (1986)

    MathSciNet  MATH  Google Scholar 

  32. Segre,~E., Kida,~S.: Late states of incompressible 2d decaying vorticity fields. Fluid Dyn. Res. 23, 89–112 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Turkington,~B., Majda,~A.J., Haven,~K., DiBattista,~M.: Statistical equilibrium predictions of jets and spots on Jupiter. Proc. Nat. Acad. Sci. USA 98, 12346–12350 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zakharov,~V.E., Pushkarev,~A.N., Shvets,~V.F., Yan’kov,V.V.: Soliton turbulence. JETP Lett. 48, 83–86 (1988)

    Google Scholar 

  35. Zhidkov,~P.E.: On an invariant measure for a nonlinear Schrödinger equation. Soviet Math. Dokl. 43, 431–434 (1991)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard S. Ellis.

Additional information

Communicated by P. Constantin

This research was supported in part by grants from the Department of Energy (DE-FG02-99ER25376) and from the National Science Foundation (NSF-DMS-0202309)

This research was partially supported by a Mathematical Sciences Postdoctoral Research Fellowship from the National Science Foundation.

This research was supported in part by grants from the Department of Energy (DE-FG02-99ER25376) and from the National Science Foundation (NSF-DMS-0207064).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellis, R., Jordan, R., Otto, P. et al. A Statistical Approach to the Asymptotic Behavior of a Class of Generalized Nonlinear Schrödinger Equations. Commun. Math. Phys. 244, 187–208 (2004). https://doi.org/10.1007/s00220-003-0978-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-003-0978-2

Keywords

Navigation