Skip to main content

Advertisement

Log in

A review of parametrized trajectory method-based chemical kinetics application to food and flavor analysis

  • Review Article
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Volatile organic compounds (VOCs) are considered crucial in determining the aroma and flavor profile of food and fermented beverages. Volatile compounds emitted from food carry invaluable information that can be used to detect subtle changes in food products and are viewed as an indicator of food quality. Chemical ionization-based direct-ionization mass spectrometry (DI-MS) techniques, which are prominently used in determining the concentration of an unknown mixture of compounds, for example, air, are reviewed. DI-MS techniques, such as proton transfer reaction mass spectrometry (PTR-MS) and selected ion flow tube mass spectrometry (SIFT-MS) offer real-time, rapid, high-sensitivity, and online analysis of VOCs. Accurate quantification of trace gases can be achieved without instrument calibration if we know the rate coefficients of ion-molecule reactions. The rate coefficients can be used to calculate the sensitivities of VOCs as detected by chemical ionization mass spectrometry (CI-MS) methods. The neutral molecule’s electric dipole moment and polarizability are essential input parameters to compute rates using parametrized trajectory model. An application for the calculation of rates is provided (GitHub: link) under elevated energy and temperature conditions, along with a database dedicated to physical and chemical properties of most exotic VOCs linked to food and alcoholic beverages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data available within the article or its supplementary materials.

References

  1. Jackson RS (2000). In: Jackson RS (ed) Wine science (Second Edition), 2nd edn. Food Science and Technology; Academic Press, San Diego, pp 544–590

    Google Scholar 

  2. Ridgway K, Lalljie S, Smith R (2010) Analysis of Food Taints and off-flavours—a review. Food Addit Contam Part A 27:146–68

    Article  CAS  Google Scholar 

  3. Lord T (2003). In: Baigrie B (ed) Taints and off-Flavours in foods. Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing, pp 64–111

  4. Spinnler E (2003). In: Baigrie B (ed) Taints and off-flavours in foods. Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing, pp 176–188

  5. Kilcast D (2003). In: Baigrie B (ed) Taints and off-flavours in foods. Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing, pp 5–30

  6. Hansel A, Jordan A, Holzinger R, Prazeller P, Vogel W, Lindinger W (1995) Proton transfer reaction mass spectrometry: on-line trace gas analysis at the ppb level. Int J Mass Spectrom Ion Processes 149–150:609–619

    Article  Google Scholar 

  7. Španěl P, Smith D (1996) Selected ion flow tube: a technique for quantitative trace gas analysis of air and breath. Med Biol Eng Comput 34:409–419

    Article  PubMed  Google Scholar 

  8. Sulzer P, Edtbauer A, Hartungen E, Jürschik S, Jordan A, Hanel G, Feil S, Jaksch S, Märk L, Märk TD (2012) From conventional proton-transfer-reaction mass spectrometry (PTR-MS) to universal trace gas analysis. Int J Mass Spectrom 321–322:66–70

    Article  Google Scholar 

  9. Tsevdou M, Soukoulis C, Cappellin L, Gasperi F, Taoukis PS, Biasioli F (2013) Monitoring the effect of high pressure and transglutaminase treatment of milk on the evolution of flavour compounds during lactic acid fermentation using PTR-ToF-MS. Food Chem 138:2159–2167

    Article  CAS  PubMed  Google Scholar 

  10. Jordan A, Haidacher S, Hanel G, Hartungen E, Herbig J, Märk L, Schottkowsky R, Seehauser H, Sulzer P, Märk T (2009) An online ultra-high sensitivity Proton-transfer-reaction mass-spectrometer combined with switchable reagent ion capability PTR+SRI-MS. Int J Mass Spectrom 286:32–38

    Article  CAS  Google Scholar 

  11. Yener S, Romano A, Cappellin L, Granitto PM, Aprea E, Navarini L, Märk TD, Gasperi F, Biasioli F (2015) Tracing coffee origin by direct injection headspace analysis with PTR/SRI-MS. Food Res Int 69:235–243

    Article  CAS  Google Scholar 

  12. Lindinger W, Taucher J, Jordan A, Hansel A, Vogel W (1997) Endogenous production of methanol after the consumption of fruit. Alcohol Clin Exp Res 21:939–943

    Article  CAS  PubMed  Google Scholar 

  13. Lindinger C, Labbe D, Pollien P, Rytz A, Juillerat M, Yeretzian C, Blank I (2008) When Machine tastes coffee: instrumental approach to predict the sensory profile of espresso coffee. Anal Chem 80:1574–81

    Article  CAS  PubMed  Google Scholar 

  14. Eerdekens G, Ganzeveld LN, Vil‘a-Guerau de Arellano J, Klüpfel T and Sinha V (2009) Flux estimates of isoprene, methanol and acetone from airborne PTR-MS measurements over the tropical rainforest during the GABRIEL 2005 campaign. Atmos Chem Phys 9:4207–4227

    Article  CAS  Google Scholar 

  15. Lindinger W, Hansel A, Jordan A (1998) On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research. Int J Mass Spectrom Ion Processes 173:191–241

    Article  CAS  Google Scholar 

  16. Trefz P, Schmidt M, Oertel P, Obermeier J, Brock B, Kamysek S, Dunkl J, Zimmermann R, Schubert J, Miekisch W (2013) Continuous real time breath gas monitoring in the clinical environment by proton-transfer-reaction-time-of-flight-mass spectrometry. Anal Chem 85(21):10321–10329

  17. Spanel P, Wang TS, Smith D (2002) A selected ion flow tube, SIFT, study of the reactions of H\(_{3}\)O\(^{+}\), NO\(^+\) and O\(_{2}^{+}\) ions with a series of diols. Int J Mass Spectrom 218:227–236

    Article  CAS  Google Scholar 

  18. Španěel P, Smith D (2020) Dissociation of H\(_{3}\)O\(^{+}\), NO\(^+\) and O\(_{2}^{+*}\) reagent ions injected into nitrogen carrier gas in SIFT-MS and reactivity of the ion fragments. Int J Mass Spectrom 458:116438

    Article  Google Scholar 

  19. In proton transfer reaction mass spectrometry; John Wiley & Sons, Ltd: 2014; Chapter 6, pp 221–265

  20. Cappellin L, Probst M, Limtrakul J, Biasioli F, Schuhfried E, Soukoulis C, Märk TD, Gasperi F (2010) Proton transfer reaction rate coefficients between H3O+ and some sulphur compounds. Int J Mass Spectrom 295:43–48

    Article  CAS  Google Scholar 

  21. Cappellin L, Karl T, Probst M, Ismailova O, Winkler PM, Soukoulis C, Aprea E, Märk TD, Gasperi F, Biasioli F (2012) On quantitative determination of volatile organic compound concentrations using proton transfer reaction time-of-flight mass spectrometry. Environ Sci Technol 46:2283–2290

    Article  CAS  PubMed  Google Scholar 

  22. Su T, Bowers MT (1973) Theory of ion-polar molecule collisions. Comparison with experimental charge transfer reactions of rare gas ions to geometric isomers of difluorobenzene and dichloroethylene. J Chem Phys 58:3027–3037

    Article  Google Scholar 

  23. Su T, Chesnavich WJ (1982) Parametrization of the ion-polar molecule collision rate constant by trajectory calculations. J Chem Phys 76:5183–5185

    Article  CAS  Google Scholar 

  24. Su T (1994) Parametrization of kinetic energy dependence of ion-polar molecule collision rate constants by trajectory calculations. J Chem Phys 100:4703–4703

    Article  CAS  Google Scholar 

  25. Ellis AM, Mayhew CA (2014) In proton transfer reaction mass spectrometry principles and applications. John Wiley & Sons, Chichester

    Book  Google Scholar 

  26. Yuan B, Koss A, Warneke C, Coggon M, Sekimoto K, de Gouw J (2017) Proton-transfer-reaction mass spectrometry: applications in atmospheric sciences. Chem Rev 117(21):13187–13229

  27. Sekimoto K, Li S-M, Yuan B, Koss A, Coggon M, Warneke C, de Gouw J (2017) Calculation of the sensitivity of proton-transfer-reaction mass spectrometry (PTR-MS) for organic trace gases using molecular properties. Int J Mass Spectrom 421:71–94

  28. Boscaini E, Mikoviny T, Wisthaler A, Hartungen E, Märk T (2004) Characterization of wine with PTR-MS. Int J Mass Spectrom 239:215–219

    Article  CAS  Google Scholar 

  29. Sémon E, Arvisenet G, Guichard E, Le Quéré JL (2017) Modified Proton Transfer Reaction Mass Spectrometry (PTR-MS) operating conditions for in vitro and in vivo analysis of wine aroma. J Mass Spectrom 53:65–77

    Article  Google Scholar 

  30. Milligan DB, Wilson PF, Freeman CG, Meot-Ner M, McEwan MJ (2002) Dissociative Proton Transfer Reactions of H+3, N2H+, and H3O+ with acyclic, cyclic, and aromatic hydrocarbons and nitrogen compounds, and astrochemical implications. J Phys Chem A 106:9745–9755

    Article  CAS  Google Scholar 

  31. Francis GJ, Milligan DB, McEwan MJ (2007) Gas-phase reactions and rearrangements of alkyl esters with H\(_{3}\)O\(^{+}\), O\(_{2}^{+}\) and NO\(^+\): a selected ion flow tube study. J Phys Chem A 111:9670–9679

    Article  CAS  PubMed  Google Scholar 

  32. Wannier GH (1951) On the motion of gaseous ions in a strong electric field. I Phys Rev 83:281–289

    Article  CAS  Google Scholar 

  33. Wannier GH (1953) Motion of gaseous ions in strong electric fields. Bell Syst Tech J 32:170–254

    Article  CAS  Google Scholar 

  34. McFarland M, Albritton DL, Fehsenfeld FC, Ferguson EE, Schmeltekopf AL (1973) Flow-drift technique for ion mobility and ion-molecule reaction rate constant measurements. II. Positive ion reactions of N\(^{+}\), O\(^{+}\), and H\(_{2}^{+}\) with O\(_{2}\) and O\(^{+}\) with N\(_{2}\) from thermal to 2 eV. J Chem Phys 59:6620–6628

    Article  CAS  Google Scholar 

  35. SRI-MS ions, https://www.ionicon.com/accessories/details/srisri

  36. Adams NG, Smith D (1976) The selected ion flow tube (SIFT); A technique for studying ion-neutral reactions. Int J Mass Spectrom Ion Processes 21:349–359

    Article  CAS  Google Scholar 

  37. Ferguson EE, Fehsenfeld FC, Schmeltekopf AL (1969). In: Bates DR, Estermann I (eds) Advances in atomic and molecular physics, vol 5. Academic Press, pp 1–56

  38. Wang T, Spanel P, Smith D (2003) Selected Ion Flow Tube, SIFT, studies of the reactions of H\(_{3}\)O\(^{+}\), NO\(^+\) and O\(_{2}^{+}\) with eleven C\(_{10}\)H\(_{16}\) monoterpenes. Int J Mass Spectrom 228:117–126

    Article  CAS  Google Scholar 

  39. Spanel P, Smith D (1997) SIFT studies of the reactions of H\(_{3}\)O\(^{+}\), NO\(^+\), and O\(_{2}^{+}\) with a series of alcohols. Int J Mass Spectrom Ion Process 167–168:375–388

    Article  Google Scholar 

  40. Bohme D (1975) Interactions between ions and molecules. Luenum, New York

    Google Scholar 

  41. Bouchoux G, Salpin J, Leblanc D (1996) A relationship between the kinetics and thermochemistry of proton transfer reactions in the gas phase. Int J Mass Spectrom Ion Processes 153:37–48

    Article  CAS  Google Scholar 

  42. Španěl P, Smith D (1998) Selected ion flow tube studies of the reactions of H\(_{3}\)O\(^{+}\), NO\(^+\) and O\(_{2}^{+}\) with several amines and some other nitrogencontaining molecules. Int J Mass Spectrom 176:203–211

    Article  Google Scholar 

  43. Sovová K, Dryahina K, Spanel P (2011) Selected ion flow tube (SIFT) studies of the reactions of H\(_{3}\)O\(^{+}\), NO\(^+\) and O\(_{2}^{+}\) with six volatile phytogenic esters. Int J Mass Spectrom 300:31–38

    Article  Google Scholar 

  44. Smith D, Chippendale TWE, Španěl P (2011) Selected ion flow tube, SIFT, studies of the reactions of H\(_{3}\)O\(^{+}\), NO\(^+\) and O\(_{2}^{+}\) with some biologically active isobaric compounds in preparation for SIFT-MS analyses. Int J Mass Spectrom 303:81–89

    Article  CAS  Google Scholar 

  45. Canaval E, Hyttinen N, Schmidbauer B, Fischer L, Hansel A (2019) NH4+ association and proton transfer reactions with a series of organic molecules. Front Chem 3(7):191

  46. Swift SJ, Smith D, Dryahina K, Gnioua MO, Španěl P (2022) Kinetics of reactions of NH\(_{4}^{+}\) with some biogenic organic molecules and monoterpenes in helium and nitrogen carrier gases: A potential reagent ion for selected ion flow tube mass spectrometry. Rapid Commun Mass Spectrom 36:e9328

    Article  CAS  PubMed  Google Scholar 

  47. Amadei G, Ross BM (2011) The reactions of a series of terpenoids with H\(_{3}\)O\(^{+}\), NO\(^+\) and O\(_{2}^{+}\) studied using selected ion flow tube mass spectrometry. Rapid Commun Mass Spectrom 25:162–168

    Article  CAS  PubMed  Google Scholar 

  48. Španěl P, Wang T, Smith D (2002) A selected ion flow tube, SIFT, study of the reactions of H\(_{3}\)O\(^{+}\), NO\(^+\) and O\(_{2}^{+}\) ions with a series of diols. Int J Mass Spectrom 218:227–236

    Article  Google Scholar 

  49. Norman M, Hansel A, Wisthaler A (2007) O+2 as reagent ion in the PTR-MS instrument: detection of gas-phase ammonia. Int J Mass Spectrom 265:382–387

    Article  CAS  Google Scholar 

  50. Harrison AG (1992). In: Harrison AG (ed) Chemical ionization mass spectrometry, 2nd edn. Taylor & Francis, Canada, pp 7–41 (Chapter 2)

    Google Scholar 

  51. Bhatia M, Manini N, Biasioli F, Cappellin L (2022) Calculated rate coefficients between CI-MS reagent ions and organosulfur compounds causing food taints and off-flavours. Int J Mass Spectrom 478:116860

    Article  CAS  Google Scholar 

  52. Bhatia M (2023) A DFT evaluation of molecular reactivity of volatile organic compounds in support of chemical ionization mass spectrometry. Comput Theor Chem 1223:114101

    Article  CAS  Google Scholar 

  53. Langevin P (1905) A fundamental formula for kinetic theory. Annales de chimie et de physique 5:245

  54. Su T, Bowers TM (1973) Ion-Polar molecule collisions: the effect of ion size on ion-polar molecule rate constants; the parameterization of the average-dipole-orientation theory. Int J Mass Spectrom Ion Phys 12:347–356

    Article  CAS  Google Scholar 

  55. Chesnavich WJ, Su T, Bowers MT (1980) Collisions in a noncentral field: a variational and trajectory investigation of ion-dipole capture. J Chem Phys 72:2641–2655

    Article  CAS  Google Scholar 

  56. Su T (1988) Erratum: trajectory calculations of ion-polar molecule capture rate constants at low temperatures [J. Chem. Phys. 88, 4102 (1988)]. J Chem Phys 89:5355–5355

    Article  CAS  Google Scholar 

  57. Yeretzian C, Jordan A, Badoud R, Lindinger W (2002) From the green bean to the cup of coffee: Investigating coffee roasting by on-line monitoring of volatiles. Eur Food Res Technol 214:92–104

    Article  CAS  Google Scholar 

  58. Yeretzian C, Jordan A, Lindinger W (2003) Analysing the headspace of coffee by proton-transfer-reaction mass-spectrometry. Int J Mass Spectrom 223–224:115–139

    Article  Google Scholar 

  59. Gasperi F, Gallerani G, Boschetti A, Biasioli F, Monetti A, Boscaini E, Jordan A, Lindinger W, Iannotta S (2001) The mozzarella cheese flavour profile: a comparison between judge panel analysis and proton transfer reaction mass spectrometry. J Sci Food Agric 81:357–363

    Article  CAS  Google Scholar 

  60. Boamfa EI, Steeghs MML, Cristescu SM, Harren FJM (2004) Trace gas detection from fermentation processes in apples; an intercomparison study between proton-transfer-reaction mass spectrometry and laser photoacoustics. Int J Mass Spectrom 239:193–201

    Article  CAS  Google Scholar 

  61. Possner D, Zimmer T, Kürbel P, Dietrich H (2014) Methanol contents of fruit juices and smoothies in comparison to fruits and a simple method for the determination thereof. Dtsch Lebensmitt Rundsch 110:65–69

    CAS  Google Scholar 

  62. Déléris I, Saint-Eve A, Lieben P, Cypriani M-L, Jacquet N, Brunerie P, Souchon I (2014). In: Ferreira V, Lopez R (eds) Flavour science. Academic Press, San Diego, pp 533–537

    Chapter  Google Scholar 

  63. Carbone F, Mourgues F, Biasioli F, Gasperi F, Märk T, Rosati C, Perrotta G (2006) Development of molecular and biochemical tools to investigate fruit quality traits in strawberry élite genotypes. Mol Breed 18:127–142

    Article  CAS  Google Scholar 

  64. Ruth S, Frasnelli J, Carbonell L (2008) Volatile flavour retention in food technology and during consumption: juice and custard examples. Food Chem 106:1385–1392

    Article  Google Scholar 

  65. Van Ruth S, Boscaini E, Mayr D, Pugh J, Posthumus M (2003) Evaluation of three gas chromatography and two direct mass spectrometry techniques for aroma analysis of dried red bell peppers. Int J Mass Spectrom 223–224:55–65

    Article  Google Scholar 

  66. Ruth S, Dings L, Buhr K, Posthumus M (2004) In vitro and in vivo volatile flavour analysis of red kidney beans by proton transfer reaction-mass spectrometry. Food Res Int 37:785–791

    Article  Google Scholar 

  67. Løkke M, Edelenbos M, Larsen E, Feilberg A (2012) Investigation of volatiles emitted from freshly cut onions (\(Allium cepa\) L.) by real time Proton-Transfer Reaction-Mass Spectrometry (PTR-MS). Sens 12:16060–76

    Article  Google Scholar 

  68. Wieland F, Glöss A, Keller M, Wetzel A, Schenker S, Yeretzian C (2011) Online monitoring of coffee roasting by proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS): Towards a real-time process control for a consistent roast profile. Anal Bioanal Chem 402:2531–43

    Article  PubMed  Google Scholar 

  69. Lanza M, Acton W, Breiev K, Jürschik S, Gutmann R, Jordan A, Hartungen E, Hanel G, Herbig J, Märk L, Mayhew C, Märk T, Sulzer P (2015) Selected-reagent-ionization mass spectrometry (SRI-MS): advancements in instrumentation and novel applications, 20th symposium on application of plasma processes, pp 84–95

  70. Soukoulis C, Cappellin L, Aprea E, Costa F, Viola R, Märk T, Gasperi F, Biasioli F (2012) PTR-ToF-MS, a novel, rapid, high sensitivity and non-invasive tool to monitor volatile compound release during fruit post-harvest storage: the case study of apple ripening. Food Bioproc Tech 6:2831–2843

  71. Romano A, Cappellin L, Ting V, Aprea E, Navarini L, Gasperi F, Biasioli F (2014) Nosespace analysis by PTR-ToF-MS for the characterization of food and tasters: the case study of coffee. Int J Mass Spectrom 365–366:20–27

    Article  Google Scholar 

  72. Campbell-Sills H, Capozzi V, Romano A, Cappellin L, Spano G, Breniaux M, Lucas P, Biasioli F (2016) Advances in wine analysis by PTR-ToF-MS: optimization of the method and discrimination of wines from different geographical origins and fermented with different malolactic starters. Int J Mass Spectrom 397–398:42–51

    Article  Google Scholar 

  73. Mochalski P, Unterkofler K, Hinterhuber H, Amann A (2014) Monitoring of selected skin-borne volatile markers of entrapped humans by selective reagent ionization time of flight mass spectrometry in NO\(^{+}\) mode. Anal Chem 86:3915–3923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cappellin L, Makhoul S, Schuhfried E, Romano A, Sanchez del Pulgar J, Aprea E, Farneti B, Costa F, Gasperi F, Biasioli F (2014) Ethylene: absolute real-time high-sensitivity detection with PTR/SRI-MS. The example of fruits, leaves and bacteria. Int J Mass Spectrom 365–366:33–41

    Article  Google Scholar 

  75. Mochalski P, Unterkofler K, Spanel P, Smith D, Amann A (2014) Product ion distributions for the reactions of NO\(^{+}\) with some physiologically significant volatile organosulfur and organoselenium compounds obtained using a selective reagent ionization time-of-flight mass spectrometer. Rapid Commun Mass Spectrom 28:1683–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Olivenza D, Mayhew C, González-Méndez R (2019) selective reagent ion mass spectrometric investigations of the nitroanilines. J Am Soc Mass Spectrom 30:2259–2266

    Article  Google Scholar 

  77. Sumonsiri N, Barringer S (2013) Application of SIFT-MS in monitoring volatile compounds in fruits and vegetables. Curr Anal Chem 9(4):631–641

  78. Iachetta L, Malek L, Ross BM (2010) The reactions of H\(_{3}\)O\(^{+}\), NO\(^+\) and O\(_{2}^{+}\) with several flavourant esters studied using selected ion flow tube mass spectrometry. Rapid Commun Mass Spectrom 24:815–822

    Article  CAS  PubMed  Google Scholar 

  79. Smith D, Španěl P, Demarais N, Langford VS, McEwan MJ (2023) Recent developments and applications of selected ion flow tube mass spectrometry (SIFT-MS). Mass Spectrom Rev e21835:1–34

  80. Xu Y, Barringer S (2009) Effect of temperature on lipid-related volatile production in tomato purée. J Agric Food Chem 57:9108–9113

    Article  CAS  PubMed  Google Scholar 

  81. Duan H, Barringer S (2012) Changes in furan and other volatile compounds in sliced carrot during air-drying. J Food Process Preserv 36:46–54

  82. Munch R, Barringer SA (2014) Deodorization of garlic breath volatiles by food and food components. J Food Sci 79:C526–C533

    Article  CAS  PubMed  Google Scholar 

  83. McEwan MJ (2015). In: Fujii T (ed) Ion/molecule attachment reactions: mass spectrometry. Springer, US, Boston, pp 263–317

    Chapter  Google Scholar 

  84. Smith D, Španěl P (2005) Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis. Mass Spectrom Rev 24:661–700

    Article  CAS  PubMed  Google Scholar 

  85. Bhatia M, Biasioli F, Cappellin L, Piseri P, Manini N (2020) Ab initio calculation of the proton transfer reaction rate coefficients to volatile organic compounds related to cork taint in wine. J Mass Spectrom 55:e4592

    Article  CAS  PubMed  Google Scholar 

  86. Zhao J, Zhang R (2004) Proton transfer reaction rate constants between hydronium ion (H\(_3{\rm O}^{+}\)) and volatile organic compounds (VOCs). Atmos Environ 38:2177–2185

    Article  CAS  Google Scholar 

  87. Iachetta L, Malek L, Ross BM (2010) The reactions of H\(_{3}\)O\(^{+}\), NO\(^{+}\) and O\(_{2}^{+}\) with several flavourant esters studied using selected ion flow tube mass spectrometry. Rapid Commun Mass Spectrom 24(6):815–822

    Article  CAS  PubMed  Google Scholar 

  88. Spesyvyi A, Smith D, Španěl P (2017) Ion chemistry at elevated ion-molecule interaction energies in a selected ion flow-drift tube: reactions of H\(_{3}\)O\(^{+}\), NO\(^+\), and O\(_{2}^{+}\) ions with saturated aliphatic ketones. Phys Chem Chem Phys 19:31714–31723

    Article  CAS  PubMed  Google Scholar 

  89. Spesyvyi A, Sovová K, Smith D, Spanel P (2018) Increase of the charge transfer rate coefficients for NO\(^+\) and O\(_2^{+*}\) reactions with isoprene molecules at elevated interaction energies. J Phys Chem A 122(9733):9737

    Google Scholar 

  90. Bhatia M, Manini N, Biasioli F, Cappellin L (2022) Theoretical investigation of charge transfer from NO\(^+\) and O\(_2^{+*}\) ions to wine-related volatile compounds for mass spectrometry. J Am Soc Mass Spectrom 33:251–264

    Article  CAS  PubMed  Google Scholar 

  91. Harrison AG (1992) In: Harrison AG (ed) Taylor & Francis, pp 71–90

  92. Spitaler R, Araghipour N, Mikoviny T, Wisthaler A, Dalla Via J, Märk T (2007) PTR-MS in enology: advances in analytics and data analysis. Int J Mass Spectrom 266:1–7

    Article  CAS  Google Scholar 

  93. Clary DC (1998) Quantum theory of chemical reaction dynamics. Science 279:1879–1882

    Article  CAS  PubMed  Google Scholar 

  94. Lin CD, Martín F (2002). In: Pike R, Sabatier P (eds) Scattering. Academic Press, London, pp 1025–1042

    Chapter  Google Scholar 

  95. Zhang DH, Guo H (2016) Recent advances in quantum dynamics of bimolecular reactions. Annu Rev Phys Chem 67:135–158

    Article  CAS  PubMed  Google Scholar 

  96. Schatz GC (1996) Scattering theory and dynamics: time-dependent and time-independent methods. J Phys Chem 100:12839–12847

    Article  CAS  Google Scholar 

  97. Clary DC (1985) Calculations of rate constants for ion-molecule reactions using a combined capture and centrifugal sudden approximation. Mol Phys 54:605–618

    Article  CAS  Google Scholar 

  98. Hu W, Schatz GC (2006) Theories of reactive scattering. J Chem Phys 125:132301–1323015

    Article  PubMed  Google Scholar 

  99. Wei Y, Varanasi RS, Schwarz T, Gomell L, Zhao H, Larson DJ, Sun B, Liu G, Chen H, Raabe D, Gault B (2021) Machinelearning—enhanced time-of-flight mass spectrometry analysis. Patterns 2:100192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fine J, Liu J, Beck A, Alzarieni K, Ma X, Boulos V, Kenttämaa H, Chopra G (2020) Graph-based machine learning interprets and predicts diagnostic isomer-selective ion-molecule reactions in tandem mass spectrometry. Chem Sci 11:11849–11858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Liebal UW, Phan ANT, Sudhakar M, Raman K, Blank LM (2020) Machine learning applications for mass spectrometry-based metabolomics. Metabolites 10:1–25

  102. Tonezzer M, Bazzanella N, Gasperi F, Biasioli F (2022) Nanosensor based on thermal gradient and machine learning for the detection of methanol adulteration in alcoholic beverages and methanol poisoning. Sens 22:100192

    Article  Google Scholar 

  103. Bhatia M (2022) Gaussian Process Regression (GPR) method for the prediction of rate coefficients of gas-phase reactions in chemical ionization mass spectrometry. ChemRxiv 1:1–16

Download references

Acknowledgements

Financial support provided by the Fondazione Edmund Mach (Grant ADP, 2018) is highly valued.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjeet Bhatia.

Ethics declarations

Supplementary information

A CSV file containing data of all the parameters and python+tkinter code is provided and can be obtained from GitHub: link.

Conflict of interest

No conflict of interest to declare.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatia, M. A review of parametrized trajectory method-based chemical kinetics application to food and flavor analysis. Eur Food Res Technol 249, 1953–1968 (2023). https://doi.org/10.1007/s00217-023-04289-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-023-04289-8

Keywords

Navigation