Skip to main content
Log in

Rheological behavior and microstructure of Pickering emulsions based on different concentrations of gliadin/sodium caseinate nanoparticles

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The properties of Pickering emulsion stabilized by different gliadin/sodium caseinate nanoparticle (Gli/CAS NPs) concentrations were investigated through physical stability, rheological properties, and microstructure observation. The results suggested that the higher the particle concentration, the smaller the size of the emulsion. The Pickering emulsion with 4% Gli/CAS NPs displayed the smallest particle size and higher stability. All the Pickering emulsion samples showed pseudoplastic behavior which is regulated through NPs concentration and oil fractions. Frequency sweep and large deformation rheology showed that the prepared Pickering emulsions shared dominant solid characteristic which was mainly determined by the particle network in the continuous phase. CLSM and Cryo-SEM observation showed that Gli/CAS particles adsorbed on the oil–water interface and formed film structures. As Gli/CAS NPs increased, the surface film becomes denser which prevents the coalescence of adjacent oil droplets. The unadsorbed particles in the continuous phase formed a three-dimensional net structure which improved the stability and viscoelastic properties of Pickering emulsion. This work showed that the microstructure and rheological properties of Pickering emulsions could be regulated by particle concentration, which might provide interesting features for various industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu F, Zheng J, Huang CH, Tang CH, Ou SY (2018) Pickering high internal phase emulsions stabilized by protein-covered cellulose nanocrystals. Food Hydrocoll 82:96–105. https://doi.org/10.1016/j.foodhyd.2018.03.047

    Article  CAS  Google Scholar 

  2. Xiao J, Li Y, Huang Q (2016) Recent advances on food-grade particles stabilized Pickering emulsions: fabrication, characterization and research trends. Trends Food Sci Technol 55:48–60. https://doi.org/10.1016/j.tifs.2016.05.010

    Article  CAS  Google Scholar 

  3. Feng X, Sun Y, Yang Y et al (2020) Zein nanoparticle stabilized Pickering emulsion enriched with cinnamon oil and its effects on pound cakes. LWT 122:109025. https://doi.org/10.1016/j.lwt.2020.109025

    Article  CAS  Google Scholar 

  4. Zhang C, Feng F, Zhang H (2018) Emulsion electrospinning: fundamentals, food applications and prospects. Trends Food Sci Technol 80:175–186. https://doi.org/10.1016/j.tifs.2018.08.005

    Article  CAS  Google Scholar 

  5. Xu W, Zhu D, Li Z et al (2019) Controlled release of lysozyme based core/shells structured alginate beads with CaCO3 microparticles using Pickering emulsion template and in situ gelation. Colloid Surfaces B 183:110410. https://doi.org/10.1016/j.colsurfb.2019.110410

    Article  CAS  Google Scholar 

  6. Wang WW, Lim HP, Low LE, Tey BT, Chan ES (2020) Food-grade Pickering emulsions for encapsulation and delivery of bioactives. Trends Food Sci Technol 100:320–332. https://doi.org/10.1016/j.tifs.2020.04.020

    Article  CAS  Google Scholar 

  7. Dong Z, Liu Z, Shi J et al (2019) Carbon nanoparticle-stabilized Pickering emulsion as a sustainable and high-performance interfacial catalysis platform for enzymatic esterification/transesterification. ACS Sustainable Chem Eng 7:7619–7629. https://doi.org/10.1021/acssuschemeng.8b05908

    Article  CAS  Google Scholar 

  8. Xu YT, Liu TX, Tang CH (2019) Novel Pickering high internal phase emulsion gels stabilized solely by soy β-conglycinin. Food Hydrocoll 88:21–30. https://doi.org/10.1016/j.foodhyd.2018.09.031

    Article  CAS  Google Scholar 

  9. Ahsan HM, Pei Y, Luo X et al (2020) Novel stable Pickering emulsion based solid foams efficiently stabilized by microcrystalline cellulose/chitosan complex particles. Food Hydrocoll 108:106044. https://doi.org/10.1016/j.foodhyd.2020.106044

    Article  CAS  Google Scholar 

  10. Jin B, Zhou X, Guan J et al (2019) Elucidation of stabilizing Pickering emulsion with jackfruit filum pectin-soy protein nanoparticles obtained by photocatalysis. J Dispersion Sci Technol 40:909–917. https://doi.org/10.1080/01932691.2018.1489277

    Article  CAS  Google Scholar 

  11. Liu X, Huang YQ, Chen XW, Deng ZY, Yang XQ (2019) Whole cereal protein-based Pickering emulsions prepared by zein-gliadin complex particles. J Cereal Sci 87:46–51. https://doi.org/10.1016/j.jcs.2019.02.004

    Article  CAS  Google Scholar 

  12. Zhou B, Gao S, Li X, Liang H, Li S (2020) Antioxidant Pickering emulsions stabilised by zein/tannic acid colloidal particles with low concentration. Int J Food Sci Tech 55:1924–1934. https://doi.org/10.1111/ijfs.14419

    Article  CAS  Google Scholar 

  13. Zhu F (2019) Starch based Pickering emulsions: fabrication, properties, and applications. Trends in Food Sci Technol 85:129–137. https://doi.org/10.1016/j.tifs.2019.01.012

    Article  CAS  Google Scholar 

  14. Yuan D, Hu YQ, Zeng T, Yin S, Yang XQ (2017) Development of stable Pickering emulsions/oil powders and Pickering HIPEs stabilized by Gliadin/Chitosan complex particles. Food Funct 8:2220–2230. https://doi.org/10.1039/C7FO00418D

    Article  CAS  PubMed  Google Scholar 

  15. Zhou F, Zeng T, Yin S, Yuan D, Yang XQ (2017) Development of antioxidant gliadin particle stabilized Pickering high internal phase emulsions (HIPEs) as oral delivery and the in vitro digestion fate. Food Funct 9:959–970. https://doi.org/10.1039/C7FO01400G

    Article  Google Scholar 

  16. He Y, Guo J, Ren G et al (2020) Effects of konjac glucomannan on the water distribution of frozen dough and corresponding steamed bread quality. Food Chem 330:127243. https://doi.org/10.1016/j.foodchem.2020.127243

    Article  CAS  PubMed  Google Scholar 

  17. Xu W, Xiong Y, Li Z et al (2020) Stability, microstructural and rheological properties of complex prebiotic emulsion stabilized by sodium caseinate with inulin and konjac glucomannan. Food Hydrocoll 105:105772. https://doi.org/10.1016/j.foodhyd.2020.105772

    Article  CAS  Google Scholar 

  18. Zhang X, Liang H, Li J, Wei X, Li B (2020) Improving the emulsifying property of gliadin nanoparticles as stabilizer of Pickering emulsions: modification with sodium carboxymethyl cellulose. Food Hydrocoll 107:105936. https://doi.org/10.1016/j.foodhyd.2020.105936

    Article  CAS  Google Scholar 

  19. Patel A, Bouwens E, Velikov K (2010) Sodium Caseinate stabilized Zein colloidal particles. J Agri Food Chem 58:12497–12503. https://doi.org/10.1021/jf102959b

    Article  CAS  Google Scholar 

  20. Liu F, Tang CH (2014) Phytosterol colloidal particles as Pickering stabilizers for emulsions. J Agr Food Chem 62:5133–5141. https://doi.org/10.1021/jf404930c

    Article  CAS  Google Scholar 

  21. Xiao J, Wang X, Gonzalez AJP, Huang Q (2016) Kafirin nanoparticles-stabilized Pickering emulsions: microstructure and rheological behavior. Food Hydrocoll 54:30–39. https://doi.org/10.1016/j.foodhyd.2015.09.008

    Article  CAS  Google Scholar 

  22. Pan K, Zhong Q (2016) Low energy, organic solvent-free co-assembly of zein and caseinate to prepare stable dispersions. Food Hydrocoll 52:600–606. https://doi.org/10.1016/j.foodhyd.2015.08.014

    Article  CAS  Google Scholar 

  23. Luo SZ, Hu XF, Pan LH et al (2019) Preparation of camellia oil-based W/O emulsions stabilized by tea polyphenol palmitate: Structuring camellia oil as a potential solid fat replacer. Food Chem 276:209–217. https://doi.org/10.1016/j.foodchem.2018.09.161

    Article  CAS  PubMed  Google Scholar 

  24. Xiao J, Gonzalez AJP, Huang Q (2016) Kafirin nanoparticles-stabilized Pickering emulsions: microstructure and rheological behavior. Food Hydrocoll 54:30–39. https://doi.org/10.1016/j.foodhyd.2015.09.008

    Article  CAS  Google Scholar 

  25. Zhai K, Pei X, Wang C et al (2019) Water-in-oil Pickering emulsion polymerization of N-isopropyl acrylamide using starch-based nanoparticles as emulsifier. Int J Biol Macromol 131:1032–1037. https://doi.org/10.1016/j.ijbiomac.2019.03.107

    Article  CAS  PubMed  Google Scholar 

  26. Feng Y, Lee Y (2016) Surface modification of Zein colloidal particles with sodium Caseinate to stabilize oil-in-water Pickering emulsion. Food Hydrocoll 56:292–302. https://doi.org/10.1016/j.foodhyd.2015.12.030

    Article  CAS  Google Scholar 

  27. Rutkevičius M, Allred S, Velev OD, Velikov KP (2018) Stabilization of oil continuous emulsions with colloidal particles from water-insoluble plant proteins. Food Hydrocoll 82:89–95. https://doi.org/10.1016/j.foodhyd.2018.04.004

    Article  CAS  Google Scholar 

  28. Wei Z, Huang Q (2019) Edible Pickering emulsions stabilized by ovotransferrin–gum arabic particles. Food Hydrocoll 89:590–601. https://doi.org/10.1016/j.foodhyd.2018.11.037

    Article  CAS  Google Scholar 

  29. Drapala KP, Mulvihill DM, O’Mahony JA (2018) A review of the analytical approaches used for studying the structure, interactions and stability of emulsions in nutritional beverage systems. Food Struct 16:27–42. https://doi.org/10.1016/j.foostr.2018.01.004

    Article  Google Scholar 

  30. Tan H, Zhao L, Tian S et al (2017) Gelatin particle-stabilized high-internal phase emulsions for use in oral delivery systems: protection effect and in vitro digestion study. J Agr Food Chem 65:900–907. https://doi.org/10.1021/acs.jafc.6b04705

    Article  CAS  Google Scholar 

  31. Matos M, Laca A, Rea F et al (2018) O/W emulsions stabilized by OSA-modified starch granules versus non-ionic surfactant: Stability, rheological behaviour and resveratrol encapsulation. J Food Eng 222:207–217. https://doi.org/10.1016/j.jfoodeng.2017.11.009

    Article  CAS  Google Scholar 

  32. Sharoba AM, Senge B, El-Mansy HA, Bahlol HE, Blochwitz R (2005) Chemical, sensory and rheological properties of some commercial German and Egyptian tomato ketchups. Eur Food Res Technol 220:142–151. https://doi.org/10.1007/s00217-004-0981-7

    Article  CAS  Google Scholar 

  33. Chen X, Ma L, Guo T et al (2018) Effects of freezing-thawing pretreatment combined with liquid nitrogen and dilute acid on the gelatinization of collagen. Int J Biol Macromol 118:435–441. https://doi.org/10.1016/j.ijbiomac.2018.06.106

    Article  CAS  PubMed  Google Scholar 

  34. Ghasemi R, Fazlali A, Mohammadi AH (2018) Effects of TiO2 nanoparticles and oleic acid surfactant on the rheological behavior of engine lubricant oil. J Mol Liq 268:925–930. https://doi.org/10.1016/j.molliq.2018.07.002

    Article  CAS  Google Scholar 

  35. Tang MX, Lei YC, Wang Y, Li D, Wang LJ (2021) Rheological and structural properties of sodium caseinate as influenced by locust bean gum and κ-carrageenan. Food Hydrocoll 112:106251. https://doi.org/10.1016/j.foodhyd.2020.106251

    Article  CAS  Google Scholar 

  36. Huang J, Zeng S, Xiong S, Huang Q (2016) Steady, dynamic, and creep-recovery rheological properties of myofibrillar protein from grass carp muscle. Food Hydrocoll 61:48–56. https://doi.org/10.1016/j.foodhyd.2016.04.043

    Article  CAS  Google Scholar 

  37. Xie H, Li L, Sun Y et al (2019) An available strategy for nasal brain transport of nanocomposite based on PAMAM dendrimers via in situ gel. Nanomaterials 9:147. https://doi.org/10.3390/nano9020147

    Article  CAS  PubMed Central  Google Scholar 

  38. Xia W, Ma L, Chen X, Li X, Zhang Y (2018) Physicochemical and structural properties of composite gels prepared with myofibrillar protein and lecithin at various ionic strengths. Food Hydrocoll 82:135–143. https://doi.org/10.1016/j.foodhyd.2018.03.044

    Article  CAS  Google Scholar 

  39. Manoi K, Rizvi SSH (2009) Emulsification mechanisms and characterizations of cold, gel-like emulsions produced from texturized whey protein concentrate. Food Hydrocoll 23:1837–1847. https://doi.org/10.1016/j.foodhyd.2009.02.011

    Article  CAS  Google Scholar 

  40. Foudazi R, Qavi S, Masalova I, Malkin AY (2015) Physical chemistry of highly concentrated emulsions. Adv Colloid and Interfac 220:78–91. https://doi.org/10.1016/j.cis.2015.03.002

    Article  CAS  Google Scholar 

  41. Zou Y, van Baalen C, Yang X, Scholten E (2018) Tuning hydrophobicity of zein nanoparticles to control rheological behavior of Pickering emulsions. Food Hydrocoll 80:130–140. https://doi.org/10.1016/j.foodhyd.2018.02.014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. U2004160 and No. 31701647), Natural Science Foundation of Henan province (Grant No. 162300410229), University Student Scientific Research Projects of Xinyang Normal University (2021-DXS-114) and Nanhu Scholars Program for Young Scholars of XYNU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This study does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Zheng, S., Sun, H. et al. Rheological behavior and microstructure of Pickering emulsions based on different concentrations of gliadin/sodium caseinate nanoparticles. Eur Food Res Technol 247, 2621–2633 (2021). https://doi.org/10.1007/s00217-021-03827-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-021-03827-6

Keywords

Navigation