Skip to main content
Log in

Formation of Maillard reaction products in bread crust-like model system made of different whole cereal flours

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Free and protein-bound Maillard reaction products (acrylamide, 5-hydroxymethylfurfural, α-dicarbonyl compounds, N-ε-fructosyllysine, N-ε-carboxymethyllysine and N-ε-carboxyethyllysine) and the reaction precursors (sugars and amino acids) were investigated in bread crust-like systems prepared with different cereal flours. Selected cereals were; whole and refined wheat, whole einkorn, whole rye, whole oat and whole corn. For all cereals, the concentrations of reducing sugars, free amino acids and protein-bound lysine increased significantly after dough fermentation (p < 0.05). Heating the bread crust-like model systems at 200 °C for different time periods (5, 15, 30 min) caused significant decrease in the concentration of sugars and amino acids (p < 0.05). Among α-dicarbonyl compounds, 3-deoxyglucosone and methylglyoxal were found in high amounts. However, extended heating time caused significant reduction in their concentrations (p < 0.05). Compared to 5 min of heating, higher amounts of 5-hydroxymethylfurfural formation were observed in samples heated for 15 and 30 min. However, prolonging the heating time resulted in a reduction in the amount of acrylamide formed in bread crust-like samples prepared with einkorn and oats. Heating for 5 min caused formation of early and advanced glycation products in bread crust-like samples prepared from all cereals. The amounts of early and advanced glycation products in the high molecular weight fractions of bread crust-like systems were significantly higher than those in bread-crust-like systems, but they decreased rapidly in samples heated for longer time (p < 0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alan P-A, Ofelia R-S, Patricia T, Rosario Maribel R-S (2012) Cereal bran and wholegrain as a source of dietary fibre: technological and health aspects. Int J Food Sci Nutr 63(7):882–892. https://doi.org/10.3109/09637486.2012.676030

    Article  CAS  Google Scholar 

  2. Vitaglione P, Napolitano A, Fogliano V (2008) Cereal dietary fibre: a natural functional ingredient to deliver phenolic compounds into the gut. Trends Food Sci Technol 19(9):451–463. https://doi.org/10.1016/j.tifs.2008.02.005

    Article  CAS  Google Scholar 

  3. Fennema OR (1996) Food chemistry, 3rd edn. Marcel Dekker, New York

    Google Scholar 

  4. Hellwig M, Gensberger-Reigl S, Henle T, Pischetsrieder M (2018) Food-derived 1,2-dicarbonyl compounds and their role in diseases. Semin Cancer Biol 49:1–8. https://doi.org/10.1016/j.semcancer.2017.11.014

    Article  CAS  PubMed  Google Scholar 

  5. Arribas-Lorenzo G, Morales FJ (2010) Analysis, distribution, and dietary exposure of glyoxal and methylglyoxal in cookies and their relationship with other heat-induced contaminants. J Agric Food Chem 58(5):2966–2972. https://doi.org/10.1021/jf902815p

    Article  CAS  PubMed  Google Scholar 

  6. Mesías M, Morales FJ (2017) Effect of different flours on the formation of hydroxymethylfurfural, furfural, and dicarbonyl compounds in heated glucose/flour systems. Foods (Basel, Switzerland) 6(2):14. https://doi.org/10.3390/foods6020014

    Article  CAS  Google Scholar 

  7. IARC (1994) Acrylamide. Lyon, France

    Google Scholar 

  8. Erbersdobler HF, Somoza V (2007) Forty years of furosine - forty years of using Maillard reaction products as indicators of the nutritional quality of foods. Mol Nutr Food Res 51(4):423–430. https://doi.org/10.1002/mnfr.200600154

    Article  CAS  PubMed  Google Scholar 

  9. Jakus V, Rietbrock N (2004) Advanced glycation end-products and the progress of diabetic vascular complications. Physiol Res/Academia Scientiarum Bohemoslovaca 53:131–142

    CAS  Google Scholar 

  10. Hayashi T, Namiki M (1986) Role of sugar fragmentation in the Maillard reaction. In: Fujimaki M, Namiki M, Kato H (eds) Amino-carbonyl reactions in food and biological systems. Elsevier, Amsterdam, pp 29–38

    Google Scholar 

  11. Srey C, Hull GLJ, Connolly L, Elliott CT, del Castillo MD, Ames JM (2010) Effect of inhibitor compounds on Nε-(Carboxymethyl)lysine (CML) and Nε-(Carboxyethyl)lysine (CEL) formation in model foods. J Agric Food Chem 58(22):12036–12041. https://doi.org/10.1021/jf103353e

    Article  CAS  PubMed  Google Scholar 

  12. Wang H-Y, Qian H, Yao W-R (2011) Melanoidins produced by the Maillard reaction: structure and biological activity. Food Chem 128(3):573–584. https://doi.org/10.1016/j.foodchem.2011.03.075

    Article  CAS  Google Scholar 

  13. Saura-Calixto F (1998) Antioxidant dietary fiber product: a new concept and a potential food ingredient. J Agric Food Chem 46(10):4303–4306. https://doi.org/10.1021/jf9803841

    Article  CAS  Google Scholar 

  14. Boyacı Gündüz CP, Cengiz MF (2015) Acrylamide contents of commonly consumed bread types in Turkey. Int J Food Prop 18(4):833–841. https://doi.org/10.1080/10942912.2013.877028

    Article  CAS  Google Scholar 

  15. Petisca C, Henriques AR, Pérez-Palacios T, Pinho O, Ferreira IMPLVO (2014) Assessment of hydroxymethylfurfural and furfural in commercial bakery products. J Food Compos Anal 33(1):20–25. https://doi.org/10.1016/j.jfca.2013.10.004

    Article  CAS  Google Scholar 

  16. Capuano E, Ferrigno A, Acampa I, Serpen A, Açar ÖÇ, Gökmen V, Fogliano V (2009) Effect of flour type on Maillard reaction and acrylamide formation during toasting of bread crisp model systems and mitigation strategies. Food Res Int 42(9):1295–1302. https://doi.org/10.1016/j.foodres.2009.03.018

    Article  CAS  Google Scholar 

  17. Serpen A, Gökmen V, Mogol BA (2012) Effects of different grain mixtures on Maillard reaction products and total antioxidant capacities of breads. J Food Compos Anal 26(1):160–168. https://doi.org/10.1016/j.jfca.2012.02.001

    Article  CAS  Google Scholar 

  18. Surdyk N, Rosen J, Andersson R, Aman P (2004) Effects of asparagine, fructose, and baking conditions on acrylamide content in yeast-leavened wheat bread. J Agric Food Chem 52(7):2047–2051. https://doi.org/10.1021/jf034999w

    Article  CAS  PubMed  Google Scholar 

  19. Helou C, Jacolot P, Niquet-Léridon C, Gadonna-Widehem P, Tessier FJ (2016) Maillard reaction products in bread: a novel semi-quantitative method for evaluating melanoidins in bread. Food Chem 190:904–911. https://doi.org/10.1016/j.foodchem.2015.06.032

    Article  CAS  PubMed  Google Scholar 

  20. AACC (1999)AACC international method. General Pasting Method for Wheat or Rye Flour or Starch Using the Rapid Visco Analyser, vol 76-21.01

  21. Borrelli RC, Fogliano V (2005) Bread crust melanoidins as potential prebiotic ingredients. Mol Nutr Food Res 49(7):673–678. https://doi.org/10.1002/mnfr.200500011

    Article  CAS  PubMed  Google Scholar 

  22. Tas NG, Gokmen V (2018) Effect of roasting and storage on the formation of Maillard reaction and sugar degradation products in hazelnuts (Corylus avellana L.). J Agric Food Chem. https://doi.org/10.1021/acs.jafc.8b05048

    Article  PubMed  Google Scholar 

  23. Kocadağlı T, Özdemir KS, Gökmen V (2013) Effects of infusion conditions and decaffeination on free amino acid profiles of green and black tea. Food Res Int 53(2):720–725. https://doi.org/10.1016/j.foodres.2012.10.010

    Article  CAS  Google Scholar 

  24. Gökmen V, Kocadağlı T, Göncüoğlu N, Mogol BA (2012) Model studies on the role of 5-hydroxymethyl-2-furfural in acrylamide formation from asparagine. Food Chem 132(1):168–174. https://doi.org/10.1016/j.foodchem.2011.10.048

    Article  CAS  PubMed  Google Scholar 

  25. Mogol BA, Gokmen V (2016) Effect of chitosan on the formation of acrylamide and hydroxymethylfurfural in model, biscuit and crust systems. Food Funct 7(8):3431–3436. https://doi.org/10.1039/c6fo00755d

    Article  CAS  PubMed  Google Scholar 

  26. Kocadağlı T, Gökmen V (2014) Investigation of α-dicarbonyl compounds in baby foods by high-performance liquid chromatography coupled with electrospray ionization mass spectrometry. J Agric Food Chem 62(31):7714–7720. https://doi.org/10.1021/jf502418n

    Article  CAS  PubMed  Google Scholar 

  27. Akıllıoğlu HG, Gökmen V (2014) Effects of hydrophobic and ionic interactions on glycation of casein during Maillard reaction. J Agric Food Chem 62(46):11289–11295. https://doi.org/10.1021/jf5038954

    Article  CAS  PubMed  Google Scholar 

  28. Sahlstrøm S, Shelton DR (2004) Factors influencing yeast fermentation and the effect of LMW sugars and yeast fermentation on hearth bread quality. Cereal Chem 81:328–335. https://doi.org/10.1094/CCHEM.2004.81.3.328

    Article  Google Scholar 

  29. Cason DT, Reid GC, Gatner EMS (1987) On the differing rates of fructose and glucose utilization in Saccharomyces cerevisiae. J Inst Brew 93:23–25

    Article  CAS  Google Scholar 

  30. El-Dash AA, Johnson JA (1970) Influence of yeast fermentation and baking on the content of free amino acids and primary amino groups and their effect on bread aroma stimuli. Cereal Chem 47:247–259

    CAS  Google Scholar 

  31. Benedito de Barber C, Prieto JA, Collar C (1989) Reversed-phase high-performance liquid chromatography analysis of changes in free amino acids during wheat bread dough fermentation. Cereal Chem 66:283–288

    CAS  Google Scholar 

  32. White J, Munns DJ (1950) Utilization of aspartic acid and asparagine by yeast. Nature 165(4186):111–111. https://doi.org/10.1038/165111a0

    Article  CAS  PubMed  Google Scholar 

  33. Yilmaz C, Kocadagli T, Gokmen V (2014) Formation of melatonin and its isomer during bread dough fermentation and effect of baking. J Agric Food Chem 62(13):2900–2905. https://doi.org/10.1021/jf500294b

    Article  CAS  PubMed  Google Scholar 

  34. McDermott EE, Pace J (2007) The content of amino-acids in white flour and bread. Br J Nutr 11(4):446–452. https://doi.org/10.1079/BJN19570067

    Article  Google Scholar 

  35. Kretovich VL, Ponomavera N (1961) Biokhimiya 26:237–242

    CAS  Google Scholar 

  36. Rothe M (1960) Über flüchtige Aromastoffe des Roggenbrotes Ernahrungforschung 5:131–142

    CAS  Google Scholar 

  37. Henle T (2005) Protein-bound advanced glycation endproducts (AGEs) as bioactive amino acid derivatives in foods. Amino Acids 29(4):313–322. https://doi.org/10.1007/s00726-005-0200-2

    Article  CAS  PubMed  Google Scholar 

  38. Kocadağlı T, Gökmen V (2016) Effects of sodium chloride, potassium chloride, and calcium chloride on the formation of α-dicarbonyl compounds and furfurals and the development of browning in cookies during baking. J Agric Food Chem 64(41):7838–7848. https://doi.org/10.1021/acs.jafc.6b03870

    Article  CAS  PubMed  Google Scholar 

  39. Weigel KU, Opitz T, Henle T (2004) Studies on the occurrence and formation of 1,2-dicarbonyls in honey. Eur Food Res Technol 218(2):147–151. https://doi.org/10.1007/s00217-003-0814-0

    Article  CAS  Google Scholar 

  40. Morales FJ (2008) Hydroxymethylfurfural (HMF) and related compounds. In: Stadler RH, Lineback DR (eds) Process-induced food toxicants. Wiley, Hoboken, pp 135–174

    Chapter  Google Scholar 

  41. Gokmen V, Senyuva HZ (2006) A simplified approach for the kinetic characterization of acrylamide formation in fructose-asparagine model system. Food Addit Contam 23(4):348–354. https://doi.org/10.1080/02652030500482355

    Article  CAS  PubMed  Google Scholar 

  42. Becalski A, Lau BPY, Lewis D, Seaman SW (2003) Acrylamide in foods: occurrence, sources, and modeling. J Agric Food Chem 51(3):802–808. https://doi.org/10.1021/jf020889y

    Article  CAS  PubMed  Google Scholar 

  43. Granby K, Nielsen NJ, Hedegaard RV, Christensen T, Kann M, Skibsted LH (2008) Acrylamide-asparagine relationship in baked/toasted wheat and rye breads. Food Addit Contam 25(8):921–929. https://doi.org/10.1080/02652030801958905

    Article  CAS  Google Scholar 

  44. Mustafa A, Fink M, Kamal-Eldin A, Rosén J, Andersson R, Åman P (2009) Interaction effects of fermentation time and added asparagine and glycine on acrylamide content in yeast-leavened bread. Food Chem 112(4):767–774. https://doi.org/10.1016/j.foodchem.2008.05.099

    Article  CAS  Google Scholar 

  45. Kocadağlı T, Göncüoğlu N, Hamzalıoğlu A, Gökmen V (2012) In depth study of acrylamide formation in coffee during roasting: role of sucrose decomposition and lipid oxidation. Food Funct 3(9):970–975. https://doi.org/10.1039/C2FO30038A

    Article  PubMed  Google Scholar 

  46. Stadler R (2006) The formation of acrylamide in cereal products and coffee. Elsevier, Amsterdam, pp 23–40

    Google Scholar 

  47. Koutsidis G, Simons SPJ, Thong YH, Haldoupis Y, Mojica-Lazaro J, Wedzicha BL, Mottram DS (2009) Investigations on the effect of amino acids on acrylamide, pyrazines, and Michael addition products in model systems. J Agric Food Chem 57(19):9011–9015. https://doi.org/10.1021/jf9014763

    Article  CAS  PubMed  Google Scholar 

  48. Troise AD, Wilkin JD, Fiore A (2018) Impact of rapeseed press-cake on Maillard reaction in a cookie model system. Food Chem 243:365–372. https://doi.org/10.1016/j.foodchem.2017.09.153

    Article  CAS  PubMed  Google Scholar 

  49. Granby K, Fagt S (2004) Analysis of acrylamide in coffee and dietary exposure to acrylamide from coffee. Anal Chim Acta 520(1):177–182. https://doi.org/10.1016/j.aca.2004.05.064

    Article  CAS  Google Scholar 

  50. Bråthen E, Kita A, Knutsen S, Wicklund T (2005) Addition of glycine reduces the content of acrylamide in cereal and potato products. J Agric Food Chem 53:3259–3264. https://doi.org/10.1021/jf048082o

    Article  CAS  PubMed  Google Scholar 

  51. Krishnakumar T (2014) Acrylamide in food products: a review. J Food Process Technol 5(7):1. https://doi.org/10.4172/2157-7110.1000344

    Article  CAS  Google Scholar 

  52. Borrelli RC, Fogliano V (2005) Bread crust melanoidins as potential prebiotic ingredients. Mol Nutr Food Res 49:673–678

    Article  CAS  Google Scholar 

  53. Hellwig M, Bunzel D, Huch M, Franz CMAP, Kulling SE, Henle T (2015) Stability of individual maillard reaction products in the presence of the human colonic microbiota. J Agric Food Chem 63(30):6723–6730. https://doi.org/10.1021/acs.jafc.5b01391

    Article  CAS  PubMed  Google Scholar 

  54. Russell WR, Hoyles L, Flint HJ, Dumas ME (2013) Colonic bacterial metabolites and human health. Curr Opin Microbiol 16(3):246–254. https://doi.org/10.1016/j.mib.2013.07.002

    Article  CAS  PubMed  Google Scholar 

  55. Henle T (2003) AGEs in foods: do they play a role in uremia? Kidney Int Suppl 84:S145–147. https://doi.org/10.1046/j.1523-1755.63.s84.16.x

    Article  CAS  Google Scholar 

  56. Mills DJ, Tuohy KM, Booth J, Buck M, Crabbe MJ, Gibson GR, Ames JM (2008) Dietary glycated protein modulates the colonic microbiota towards a more detrimental composition in ulcerative colitis patients and non-ulcerative colitis subjects. J Appl Microbiol 105(3):706–714. https://doi.org/10.1111/j.1365-2672.2008.03783.x

    Article  CAS  PubMed  Google Scholar 

  57. Jiang D, Chiaro C, Maddali P, Prabhu KS, Peterson DG (2009) Identification of hydroxycinnamic acid−Maillard reaction products in low-moisture baking model systems. J Agric Food Chem 57(21):9932–9943. https://doi.org/10.1021/jf900932h

    Article  CAS  PubMed  Google Scholar 

  58. Jiang D, Peterson DG (2013) Identification of bitter compounds in whole wheat bread. Food Chem 141(2):1345–1353. https://doi.org/10.1016/j.foodchem.2013.03.021

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vural Gökmen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This study does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 86 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çelik, E.E., Gökmen, V. Formation of Maillard reaction products in bread crust-like model system made of different whole cereal flours. Eur Food Res Technol 246, 1207–1218 (2020). https://doi.org/10.1007/s00217-020-03481-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-020-03481-4

Keywords

Navigation