Skip to main content
Log in

Phenolic compounds and antioxidant activity of twelve grape cultivars measured by chemical and electrochemical methods

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Five red (Rondo, Cabernet carol, Merlot, Pinot noir, Cabernet sauvignon), five white (Solaris, Riesling, Johanniter, Aurora, Saphira), and two pink (Freiminer, Gewurztraminer) grape cultivars were investigated. The phenolic content was determined by liquid chromatography–mass spectrometry quadrupole time-of-flight (LC-MS QTof) and ultra-performance liquid chromatography-photodiode array-fluorescence (UPLC-PDA-FL); and the antioxidant activity by two spectrophotometric methods: oxygen radical absorbance capacity (ORAC) and 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS°+), and by cyclic voltammetry (CV). The aim of this study was to determine profile of phenolic compounds of popular cool climate grape cultivars and their antioxidant potential. The used methods were compared and correlations were established between investigated parameters. Total phenolic content ranged from 1354.6 mg/100 g in dry weight (d.w). for Aurora to 4567.9 mg/100 g d.w. for Rondo. Highest antioxidant activity was observed in red cultivars Rondo, Merlot and Pinot noir (24.4, 23.6 and 21.3 mmolTrolox/100 g d.w., ABTS°+ assay), while in pink and white cultivars results not exceeded 20 mmolTrolox/100 g d.w. The aforementioned affect in red grapes was associated with their higher content of phenolic compounds, and the presence of an additional group, i.e. anthocyanins. Cyclic voltammetry measurements of redox potential of phenolics confirmed the results achieved by traditional methods of evaluating antioxidant activity. Red cultivars had the highest anodic curve area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gustafsson J, Martensson A (2005) Acta Agr Scand B-S P 55:82–97

    Google Scholar 

  2. Lasik M (2013) Eur Food Res Technol 237:843–850

    Article  CAS  Google Scholar 

  3. Tarko T, Duda-Chodak A, Sroka P, Satora P, Jurasz E (2010) J Food Compos Anal 23:463–468

    Article  CAS  Google Scholar 

  4. FAOstat (2014) http://www.fao.org/faostat

  5. Lisek J (2012) Folia Hortic 24:97–103

    Article  Google Scholar 

  6. Socha R, Gałkowska D, Robak J, Fortuna T, Buksa K (2015) Int J Food Prop 18:699–713

    Article  CAS  Google Scholar 

  7. Wang H, Cao G, Prior RL (1996) J Agric Food Chem 44:701–705

    Article  CAS  Google Scholar 

  8. Iora SRF, Maciel GM, Zielinski AAF, da Silva MV, de A Pontes, Haminiuk PV, Granato CWI D (2015) Int J Food Sci Technol 50:62–69

    Article  CAS  Google Scholar 

  9. Perestrelo R, Lu Y, Santos SAO, Silvestre AJD, Neto CP, Camara JS, Rocha SM (2012) Food Chem 135:94–104

    Article  CAS  Google Scholar 

  10. Rodriguez-Pulido F, Hernandez-Hierro JM, Nogales-Bueno J, Gordillo B, Gonzalez-Miret ML, Heredia FJ (2014) Talanta 122:145–150

    Article  CAS  Google Scholar 

  11. Li Z, Pan Q, Jin Z, Mu L, Duan C (2011) Food Chem 125:77–83

    Article  CAS  Google Scholar 

  12. Eyduran SP, Akin M, Ercisli S, Eyduran E, Maghradze D (2015) Biol Res 48:2

    Article  Google Scholar 

  13. Soobrattee MA, Neergheen VS, Luximon-Ramma A, Aruoma OI, Bahorun T (2005) Mutat Res 579:200–213

    Article  CAS  Google Scholar 

  14. Arribas AS, Martinez-Fernandez M, Chicharro M (2012) Trends Anal Chem 34:78–96

    Article  CAS  Google Scholar 

  15. Bordonaba JG, Terry LA (2012) Talanta 90:38–45

    Article  CAS  Google Scholar 

  16. Rebelo MJ, Rego R, Ferreira M, Oliveira MC (2013) Food Chem 141:566–573

    Article  CAS  Google Scholar 

  17. Jara-Palacios MJ, Hernanz D, Escudero-Gilete ML, Heredia FJ (2014) Food Res Int 66:150–157

    Article  Google Scholar 

  18. Jara-Palacios MJ, Escudero-Giletea ML, Hernandez-Hierro JM, Heredia FJ, Hernanz D (2017) Talanta 165(1):211–215

    Article  Google Scholar 

  19. Kilmartin PA, Zou H, Waterhouse AL (2001) J Agric Food Chem 49:1957–1965

    Article  CAS  Google Scholar 

  20. Wojdyło A, Oszmiański J, Bielicki P (2013) J Agric Food Chem 61:2762–2772

    Article  Google Scholar 

  21. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Free Radic Biol Med 26(9):1231–1237

    Article  CAS  Google Scholar 

  22. Ou B, Huang D, Hampsch-Woodill M, Flanagan JA, Deemer EK (2002) J Agric Food Chem 50:3122–3128

    Article  CAS  Google Scholar 

  23. Lago-Vanzela ES, Da-Silva R, Gomes E, Garcia-Romero E, Hermosin-Gutierrez I (2011) J Agric Food Chem 59:13136–13146

    Article  CAS  Google Scholar 

  24. Rodriguez-Montealegre R, Romero Peces R, Chacon Vozmediano JL, Martinez Gascuena J, Garcia Romero E (2006) J Food Compos Anal 19:687–693

    Article  CAS  Google Scholar 

  25. Hernandez-Hierro JM, Quijada-Morin N, Martinez-Lapuente L, Guadalupe Z, Ayestaran B, Rivas-Gonzalo JC, Escribano-Bailon MT (2014) Food Chem 146:41–47

    Article  CAS  Google Scholar 

  26. Benucci I, Rio Segade S, Cerreti M, Giacosa S, Paissoni MA, Liburdi K, Bautista-Ortin AB, Gomez-Plaza E, Gerbi V, Esti M, Rolle L (2017) Food Chem 237:756–765

    Article  CAS  Google Scholar 

  27. Castaneda-Ovando A, Pacheco-Hernandez M, Paez-Hernandez ME, Rodriguez JA, Galan-Vidal CA (2009) Food Chem 113:859–871

    Article  CAS  Google Scholar 

  28. Martinez-Sandoval JR, Nogales-Bueno J, Rodriguez-Pulido FJ, Hernandez-Hierro JM, Segovia-Quintero MA, Martinez-Rosasa ME, Heredia FJ (2015) J Sci Food Agric 96:1643–1647

    Article  Google Scholar 

  29. Vilanova M, Rodriguez I, Canosa P, Otero I, Gamero E, Moreno D, Talaverano I, Valdes E (2015) Food Chem 169:187–196

    Article  CAS  Google Scholar 

  30. Doshi P, Adsule P, Banerjee K, Oulkar D (2015) J Food Sci Technol 52:181–190

    Article  CAS  Google Scholar 

  31. Castillo-Munoz N, Fernandez-Gonzalez M, Gomez-Alonso S, Garcia-Romero E, Hermosin-Gutierrez I (2009) J Agric Food Chem 57:7883–7891

    Article  CAS  Google Scholar 

  32. Makhotkina O, Kilmartin PA (2012) Electrochim Acta 83:188–195

    Article  CAS  Google Scholar 

  33. Piljac J, Martinez S, Stipeevia T, Petrovia Z, Metikos-Hukovia M (2004) Am J Enol Vitic 55:417–422

    CAS  Google Scholar 

  34. Lorrain B, Ky I, Pechamat L, Teissedre P (2013) Molecules 18:1076–1100

    Article  CAS  Google Scholar 

  35. Lino FMA, de Sa LZ, Torres IMS, Rocha ML, Dinis TCP, Ghedini PC, Somerset VS, Gil ES (2014) Electrochim Acta 128:25–31

    Article  CAS  Google Scholar 

  36. Kilmartin PA, Zou H, Waterhouse AL (2002) Am J Enol Vitic 53:294–302

    CAS  Google Scholar 

  37. Zou H, Kilmartin PA, Inglis MJ, Frost A (2002) Aust J Grape Wine Res 8:163–174

    Article  CAS  Google Scholar 

  38. Awika JM, Rooney LW, Wu X, Prior RL, Cisneros-Zevallos L (2003) J Agric Food Chem 51:6657 – 6662

    Article  CAS  Google Scholar 

  39. Shalaby E, Shanab SMM (2013) Ind J Geo-Marine Sci 42:556–564

    Google Scholar 

  40. Fernandez-Pachon MS, Villano D, Garcia-Parrilla MC, Troncoso AM (2004) Anal Chim Acta 513:113–118

    Article  CAS  Google Scholar 

  41. Panceri CP, Gomes TM, De Gois JS, Borges DLG, Bordignon-Luiz MT (2013) Food Res Int 54:1343–1350

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science Centre (NCN)—Poland:UMO2013/09/B/NZ9/01745, and MINECO-Spain: AGL2017-84793-C2 projects. The authors would like to thank Tomasz Golis for providing the study material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Miguel Hernández-Hierro.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Compliance with ethics requirements

All authors declare that this article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samoticha, J., Jara-Palacios, M., Hernández-Hierro, J. et al. Phenolic compounds and antioxidant activity of twelve grape cultivars measured by chemical and electrochemical methods. Eur Food Res Technol 244, 1933–1943 (2018). https://doi.org/10.1007/s00217-018-3105-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-018-3105-5

Keywords

Navigation