Skip to main content
Log in

Lactobacillus brevis R2Δ as starter culture to improve biological and technological qualities of barley malt

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The application of lactic acid bacteria (LAB) can be a challenging yet promising tool to control the endogenous microbiota during malting and to improve malt quality. In this study, a food-grade malt-based ingredient was fermented using an antifungal strain, Lactobacillus brevis R2Δ, and applied on barley grains during steeping and germination. Different variations of starter culture concentration and cell-free supernatant were compared to a control solution during pilot-scale malting trials. All treated barley samples showed a significant decrease in aerobic bacteria (up to 99.8% reduction) and a promotion of yeast growth when compared to the untreated control. The number of kernels contaminated with Fusarium spp. could be reduced by more than 90%, as confirmed by qPCR analysis. Shorter rootlets coincided with lower malting losses (−31.8%) and with increased extract yield (+3.1%). Differences in the enzymatic activity between the malts did not significantly alter the processability of the malts during brewhouse operations. Throughout yeast fermentation, no negative impact of LAB could be detected for the majority of attributes tested. Overall, the treatment containing living starter cultures and the highest amount of total titratable acidity (71 mmol L−1) showed the most promising results when aimed at further enhancing the quality and safety of barley malt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kunze W (2010) Wort Production. In: Kunze W (ed) Technol. Brew. Malt. VLB. Berlin, pp 224–414

  2. Justé A, Malfliet S, Waud M et al (2014) Bacterial community dynamics during industrial malting, with an emphasis on lactic acid bacteria. Food Microbiol 39:39–46. doi:10.1016/j.fm.2013.10.010

    Article  Google Scholar 

  3. Justé A, Malfliet S, Lenaerts M (2011) Microflora during malting of barley: overview and impact on malt quality. BrewingScience 64:22–31

    Google Scholar 

  4. Booysen C, Dicks LMT, Meijering I, Ackermann A (2002) Isolation, identification and changes in the composition of lactic acid bacteria during the malting of two different barley cultivars. Int J Food Microbiol 76:63–73

    Article  CAS  Google Scholar 

  5. Doran P, Briggs D (1993) Microbes and grain germination. J Inst Brew 99:165–170

    Article  Google Scholar 

  6. Noots I, Delcour JA, Michiels CW (1999) From field barley to malt: detection and specification of microbial activity for quality aspects. Crit Rev Microbiol 25:121–153. doi:10.1080/10408419991299257

    Article  CAS  Google Scholar 

  7. Briggs DE (1998) Malts and Malting. In: Briggs DE (ed) Malts Malt. Chapman & Hall, London, pp 674–675t;/bib>

    Google Scholar 

  8. Kurokawa Y, Maekawa A, Takahashi M, Hayashi Y (1990) Toxicity and carcinogenicity of potassium bromate—a new renal carcinogen. Environ Health Perspect 87:309–335. doi:10.1289/ehp.9087309

    CAS  Google Scholar 

  9. Pawlowska AM, Zannini E, Coffey A, Arendt EK (2012) “Green preservatives”: combating fungi in the food and feed industry by applying antifungal lactic acid bacteria. Adv Food Nutr Res 66:217–238

    Article  CAS  Google Scholar 

  10. Oliveira P, Brosnan B, Jacob F et al (2015) Lactic acid bacteria bioprotection applied to the malting process. Part II: substrate impact and mycotoxin reduction. Food Control 51:444–452

    Article  CAS  Google Scholar 

  11. Laitila A, Sweins H, Vilpola A et al (2006) Lactobacillus plantarum and Pediococcus pentosaceus starter cultures as a tool for microflora management in malting and for enhancement of malt processability. J Agric Food Chem 54:3840–3851. doi:10.1021/jf052979j

    Article  CAS  Google Scholar 

  12. Laitila A, Sarlin T, Kotaviita E et al (2007) Yeasts isolated from industrial maltings can suppress Fusarium growth and formation of gushing factors. J Ind Microbiol Biotechnol 34:701–713. doi:10.1007/s10295-007-0241-5

    Article  CAS  Google Scholar 

  13. Mauch A, Jacob F, Coffey A, Arendt EK (2011) Part I. The use of Lactobacillus plantarum starter cultures to inhibit rootlet growth during germination of barley, reducing malting loss, and its influence on malt quality. J Am Soc Brew Chem 4:227–238

    Google Scholar 

  14. Lowe DP, Arendt EK, Soriano AM, Ulmer HM (2005) The influence of lactic acid bacteria on the quality of malt. J Inst Brew 111:42–50. doi:10.1002/j.2050-0416.2005.tb00647.x

    Article  CAS  Google Scholar 

  15. Lowe DP, Arendt EK (2004) The use and effects of lactic acid bacteria in malting and brewing with their relationships to antifungal activity, mycotoxins and gushing: a review. J Inst Brew 110:163–180

    Article  CAS  Google Scholar 

  16. Schehl B, Soriano M (2007) Reduction of malting loss using lactobacilli. MBAA Tech Q 44:84–92

    CAS  Google Scholar 

  17. Laitila A, Alakomi H-L, Raaska L et al (2002) Antifungal activities of two Lactobacillus plantarum strains against Fusarium moulds in vitro and in malting of barley. J Appl Microbiol 93:566–576

    Article  CAS  Google Scholar 

  18. Oliveira P, Brosnan B, Furey A et al (2014) Lactic acid bacteria bioprotection applied to the malting process. Part I: Strain characterization and identification of antifungal compounds. Food Control 51:444–452. doi:10.1016/j.foodcont.2014.07.004

    Article  Google Scholar 

  19. Amaha M, Kitabatake K (1981) Gushing in beer. In: Pollock JRA (ed) Brew. Sci, 2nd edn. Academic Press, London, pp 457–489

    Google Scholar 

  20. van Campenhout L, Iserentant D, Verachtert H (1998) On-Line measurement of the microbial impacts on the germination of barley. J Inst Brew 104:197–202

    Article  Google Scholar 

  21. Bol J, Klopper W, Vermeire H, Motshagen M (1985) Relation between the microflora of barley and malt quality. In: Proc. Eur. Brew. Conv. Congr. Oxford, Helsinki, pp 643–650

  22. Kreisz S, Wagner F, Back W (2001) The influence of polysaccharides from yeast and bacteria on the filterability of wort and beer. Proc. Eur. Brew. Conv. Congr. Fachverlag Hans Carl, Nürnberg, pp 1–9

    Google Scholar 

  23. Peyer LC, Axel C, Lynch KM et al (2016) Inhibition of Fusarium culmorum by carboxylic acids released from lactic acid bacteria in a barley malt substrate. Food Control. doi:10.1016/j.foodcont.2016.05.010

    Google Scholar 

  24. Haikara A, Uljas H, Suurnaki A (1993) Lactic starter cultures in malting – a novel solution to gushing problems. Proc. Eur. Brew. Conv. Congr. Oslo. 24, IRL Press, Oxford, pp 163–172t;/bib>

    Google Scholar 

  25. Axel C, Zannini E, Arendt EK et al (2014) Quantification of cyclic dipeptides from cultures of Lactobacillus brevis R2∆ by HRGC/MS using stable isotope dilution assay. Anal Bioanal Chem 406:2433–2444. doi:10.1007/s00216-014-7620-3

    Article  CAS  Google Scholar 

  26. MEBAK (2011) Raw materials: barley, adjuncts, malt, hops and hop products. Selbstverlag der Mitteleuropäische Brautechnische Analysenkommission, Freising-Weihenstephan

    Google Scholar 

  27. MEBAK (2011) Wort, beer and beer-based products. Selbstverlag der Mitteleuropäische Brautechnische Analysenkommission, Freising-Weihenstephan

    Google Scholar 

  28. Abildgren MP, Lund F, Thrane U, Elmholt S (1987) Czapek-Dox agar containing iprodione and dicloran as a selective medium for the isolation of Fusarium species. Lett Appl Microbiol 5:83–86. doi:10.1111/j.1472-765X.1987.tb01620.x

    Article  Google Scholar 

  29. Atoui A, El Khoury A, Kallassy M, Lebrihi A (2012) Quantification of Fusarium graminearum and Fusarium culmorum by real-time PCR system and zearalenone assessment in maize. Int J Food Microbiol 154:59–65. doi:10.1016/j.ijfoodmicro.2011.12.022

    Article  CAS  Google Scholar 

  30. DeColli L, Elliott C, Danaher M (2014) Development of a multi-residue method for the analysis of mycotoxins, including masked mycotoxins, in cereal-based food by UHPLC-MS/MS. In: 43rd Annu. Food Res. Conf. O’Brien Centre UCD, 10–11 Dec 2014

  31. Brijs K, Trogh I, Jones B, Delcour J (2002) Proteolytic enzymes in germinating rye grains. Cereal Chem 79:423–428

    Article  CAS  Google Scholar 

  32. Gobbetti M, Corsetti A, Rossi J (1994) The sourdough microflora. Interactions between lactic acid bacteria and yeasts: metabolism of carbohydrates. Appl Microbiol Biotechnol 41:456–460

    Article  CAS  Google Scholar 

  33. Shimizu H, Mizuguchi T, Tanaka E, Shioya S (1999) Nisin production by a mixed-culture system consisting of Lactococcus lactis and Kluyveromyces marxianus. Appl Environ Microbiol 65:3134–3141

    CAS  Google Scholar 

  34. Viljoen BC (2001) The interaction between yeasts and bacteria in dairy environments. Int J Food Microbiol 69:37–44. doi:10.1016/S0168-1605(01)00570-0

    Article  CAS  Google Scholar 

  35. Laitila A, Kotaviita E, Peltola P et al (2007) Indigenous microbial community of barley greatly influences grain germination and malt quality. J Inst Brew Distill 113:9–20

    Article  CAS  Google Scholar 

  36. Boivin P, Malanda M (1997) Improvement of malt quality and safety by adding starter culture during the malting process. MBAA Tech Q 34:96–101

    Google Scholar 

  37. Stübner M, Lutterschmid G, Vogel RF, Niessen L (2010) Heterologous expression of the hydrophobin FcHyd5p from Fusarium culmorum in Pichia pastoris and evaluation of its surface activity and contribution to gushing of carbonated beverages. Int J Food Microbiol 141:110–115. doi:10.1016/j.ijfoodmicro.2010.03.003

    Article  Google Scholar 

  38. Nierop S Van, Rautenbach M (2006) The impact of microorganisms on barley and malt quality: a review. J Am Soc Brew Chem 64:69–78

    Google Scholar 

  39. Geissinger C, Hofer K, Habler K, et al (2015) Fusarium species on barley malt—visual assessment as an appropriate tool? ASBC Annu. Meet. La Quinta, 14–17 June

    Google Scholar 

  40. Oliveira P, Mauch A, Jacob F, Arendt EK (2012) Impact of Fusarium culmorum-infected barley malt grains on brewing and beer quality. J Am Soc Brew Chem 70:186–194

    CAS  Google Scholar 

  41. Dalié DKD, Deschamps AM, Richard-Forget F (2010) Lactic acid bacteria—potential for control of mould growth and mycotoxins: a review. Food Control 21:370–380. doi:10.1016/j.foodcont.2009.07.011

    Article  Google Scholar 

  42. Shetty PH, Jespersen L (2006) Saccharomyces cerevisiae and lactic acid bacteria as potential mycotoxin decontaminating agents. Trends Food Sci Technol 17:48–55. doi:10.1016/j.tifs.2005.10.004

    Article  CAS  Google Scholar 

  43. Franco TS, Garcia S, Hirooka EY et al (2011) Lactic acid bacteria in the inhibition of Fusarium graminearum and deoxynivalenol detoxification. J Appl Microbiol 111:739–748. doi:10.1111/j.1365-2672.2011.05074.x

    Article  CAS  Google Scholar 

  44. Lynch JM (1980) Effects of organic acids on the germination of seeds and growth of seedlings. Plant Cell Environ 3:255–259. doi:10.1111/1365-3040.EP11581824

    CAS  Google Scholar 

  45. Pillane MHS, Briggs DE (1966) The use of acetic acid and sulphur dioxide to limit malting losses. J Inst Brew 72:398–403. doi:10.1002/J.2050-0416.1966.TB02981.X

    Article  Google Scholar 

  46. Mauch A, Wunderlich S, Zarnkow M (2011) Part II. the use of malt produced with 70% less malting loss for beer production: impact on processability and final quality. J Am Soc Brew Chem 69:239–254

    CAS  Google Scholar 

  47. Lowe DP, Ulmer HM, Barta RC et al (2005) Biological acidification of a mash containing 20% barley using Lactobacillus amylovorus FST 1.1: its effects on wort and beer quality. J Am Soc Brew Chem 63:96–106

    CAS  Google Scholar 

  48. Endo A, Dicks LMT (2014) Physiology of the LAB. In: Holzapfel WH (ed) Lact. acid Bact. Biodivers. Taxon. Wiley, Chicester, pp 13–30

    Chapter  Google Scholar 

  49. Kotzamanidis C, Roukas T, Skaracis G (2002) Optimization of lactic acid production from beet molasses by Lactobacillus delbrueckii NCIMB 8130. World J Microbiol Biotechnol 18:441–448

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Baillet Latour Fund within the framework of a scholarship for doctoral students. We thank Maximilian Winkler for his contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elke K. Arendt.

Ethics declarations

Conflict of interest

None.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peyer, L.C., De Kruijf, M., O’Mahony, J. et al. Lactobacillus brevis R2Δ as starter culture to improve biological and technological qualities of barley malt. Eur Food Res Technol 243, 1363–1374 (2017). https://doi.org/10.1007/s00217-017-2847-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-017-2847-9

Keywords

Navigation