Skip to main content
Log in

Relative fermentation of oligosaccharides from human milk and plants by gut microbes

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Gut microbiota is important to human health. Specific dietary glycans promote favorable microbiota growth and inhibit pathobionts. Dietary glycans most relevant to adults and weaned infants are derived from plants or lactose; human milk oligosaccharides (HMOS) are most relevant to breastfed infants. Their efficacy in supporting bacterial growth is compared to determine their potential roles in the initiation and maintenance of colonization. Bioactivities of gluco-manno-oligosaccharides (GMOS), galacto-oligosaccharides (GOS), xylo-oligosaccharides (XOS), cellobiose (CBS), HMOS, and the most prominent individual HMOS, 2′-fucosyllactose (2′-FL) were contrasted. Two representative gut microbiota mutualists, Bifidobacteria longum ATCC15697 and Lactobacillus acidophilus NRRL B-4495, and two non-mutualists, Campylobacter jejuni S107 and Escherichia coli K12, were used to assess the in vitro prebiotic potential of these oligosaccharides. All oligosaccharides afforded growth of B. longum and L. acidophilus, with HMOS supporting the most robust growth, while none of these oligosaccharides afforded meaningful growth of non-mutualists. B. longum efficiently converted HMOS, GMOS, GOS, and XOS into organic acid fermentation products, and, to a lesser degree, L. acidophilus metabolized HMOS, GMOS, and GOS. Fermentation of these glycans by C. jejuni and E. coli was sparse. B. longum fermentation products inhibited C. jejuni and E. coli. Thus, HMOS most strongly promoted growth of the two mutualists, and both HMOS and GMOS were efficiently fermented by these mutualists into organic acids. This is consistent with a primary role of HMOS in guiding early colonization of the infant microbiota by mutualist symbionts, and of plant oligosaccharides, especially GMOS, in maintaining a favorable microbiota through adulthood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

HMOS:

Human milk oligosaccharides

GMOS:

Gluco-manno-oligosaccharides

GOS:

Galacto-oligosaccharides

XOS:

Xylo-oligosaccharides

2′-FL:

2′-fucosyllactose

CBS:

Cellobiose

B. longum ATCC15697:

Bifidobacteria longum ATCC15697

L. acidophilus NRRL B-4495:

Lactobacillus acidophilus NRRL B-4495

C. jejuni S107:

Campylobacter jejuni S107

E. coli K12:

Escherichia coli K12

3-FL:

3-fucosyllactose

LNT/LNnT:

Lacto-N-tetraose/lacto-N-neotetraose

LNFP:

Lacto-N-fucopentaose

LDFT:

Lactodifucotetraose

LNDFH:

Lacto-N-difucohexaose

M2:

Mannobiose

M3:

Mannotriose

M4:

Mannotetraose

M5:

Mannopentaose

M6:

Mannohexaose

X2:

Xylobiose

X3:

Xylotriose

X4:

Xylotetraose

X5:

Mannopentaose

X6:

Xylohexaose

LC–MS:

Liquid chromatography–mass spectrometry

AA:

Acetic acid

PA:

Propionic acid

BA:

Butyric acid

LA:

Lactic acid

VA:

Valoric acid

HA:

Hexanic acid

References

  1. Boehm G, Jelinek J, Stahl B, Van Laere K, Knol J, Fanaro S, Moro G, Vigi V (2004) Prebiotics in infant formulas. J Clin Gastroenterol 38:76–79

    Article  Google Scholar 

  2. Roberfroid M, Gibson GR, Hoyles L, MaCartney AL, Rastall R, Rowland I, Wolvers D, Meheust A (2010) Prebiotic effects: metabolic and health benefits. Br J Nutr 104:1–63

    Article  Google Scholar 

  3. Ashida H, Miyake A, Kiyohara M, Wada J, Yoshida E, Kumagai H, Katayama T, Yamamoto K (2009) Two distinct α-l-fucosidases from Bifidobacterium bifidum are essential for the utilization of fucosylated milk oligosaccharides and glycoconjugates. Glycobiology 19:1010–1017

    Article  CAS  Google Scholar 

  4. Garrido D, Ruiz-Moyano S, Jimenez-Espinoza Eom HJ, Block DE, Mills DA (2013) Utilization of galactooligosaccharides by Bifidobacterium longum subsp. infantis isolates. Food Microbiol 33:262–270

    Article  CAS  Google Scholar 

  5. Yu Z, Chen C, Newburg DS (2013) Utilization of major fucosylated and sialylated human milk oligosaccharides by isolated human gut microbes. Glycobiology 23:1281–1292

    Article  CAS  Google Scholar 

  6. Andersen JM, Barrangou R, Hachem MA, Lahtinen S, Goh YJ, Svensson B, Klaenhammer TR (2011) Transcriptional and functional analysis of galactooligosaccharide uptake by lacS in Lactobacillus acidophilus. Proc Natl Acad Sci USA 108:17785–17790

    Article  CAS  Google Scholar 

  7. Yu Z, Chen C, Kling DE, Liu B, McCoy JM, Merighi M, Heidtman M, Newburg DS (2013) The principal fucosylated oligosaccharides of human milk exhibit prebiotic properties on cultured infant microbiota. Glycobiology 23:169–177

    Article  CAS  Google Scholar 

  8. Newburg DS (1996) Oligosaccharides and glycoconjugates in human milk: their role in host defense. J Mammary Gland Biol Neoplas 1:271–283

    Article  CAS  Google Scholar 

  9. Newburg DS (2000) Oligosaccharides in human milk and bacterial colonization. J Pediatr Gastroenterol Nutr 30:8–17

    Article  Google Scholar 

  10. Zampa A, Silvi S, Fabiani R, Morozzi G, Prpianesi C, Cresci A (2004) Effects of different digestible carbohydrates on bile acid metabolism and SCFA production by human gut micro-flora grown in an in vitro semi-continuous culture. Ecol/Environ Microbiol 10:19–26

    CAS  Google Scholar 

  11. Boehm G, Stahl B (2007) Oligosaccharides from milk. J Nutr 137:847–849

    Google Scholar 

  12. Newburg DS, Ruiz-Palacios GM, Morrow AL (2005) Human milk glycans protect infants against enteric pathogens. Annu Rev Nutr 25:37–58

    Article  CAS  Google Scholar 

  13. He Y, Liu S, Leone S, Newburg DS (2014) Human colostrum oligosaccharides modulate major immunologic pathways of immature human intestine. Mucosal Immunol 7:1326–1339

    Article  CAS  Google Scholar 

  14. Kunz C, Rudloff S, Baier W, Klein N, Strobe S (2000) Oligosaccharides in human milk: structural, functional, and metabolic aspects. Annu Rev Nutr 20:699–722

    Article  CAS  Google Scholar 

  15. González R, Klaassens ES, Malinen E, Vos WM, Vaughan EE (2008) Differential transcriptional response of Bifidobacterium longum to human milk, formula milk and galactooligasaccharide. Appl Environ Microbiol 74:4686–4694

    Article  Google Scholar 

  16. He Y, Liu S, Kling DE, Leone S, Lawlor NT, Huang Y, Feinberg SB, Hill DR, Newburg DS (2014) The human milk oligosaccharide 2′-fucosyllactose modulates CD14 expression in human enterocytes, thereby attenuating LPS-induced inflammation. Gut. doi:10.1136/gutjnl-2014-307544

    Google Scholar 

  17. Newburg DS (2013) Glycobiology of human milk. Biochemistry (Mosc) 78:771–785

    Article  CAS  Google Scholar 

  18. Viborg AH, Katayama T, Abou Hachem M, Andersen MC, Nishimoto M, Clausen MH, Urashima T, Svensson B, Kitaoka M (2014) Distinct substrate specificities of three glycoside hydrolase family 42 β-galactosidases from Bifidobacterium longum subsp. infantis ATCC 15697. Glycobiology 24:208–216

    Article  CAS  Google Scholar 

  19. Park A, Oh D (2010) Galacto-oligosaccharide production using microbial β-galactosidase: current state and perspectives. Appl Microbiol Biotechnol 85:1279–1286

    Article  CAS  Google Scholar 

  20. Jones L, Seymour GB, Knox JP (1997) Localization of pectic galactan in tomato cell walls using a monoclonal antibody specific to (1-4)-β-D-galactan. Plant Physiol 113:1405–1412

    Article  CAS  Google Scholar 

  21. Shabalin KA, Kulminskaya AA, Savel’ev AN, Shishlyannikov SM, Neustroev KN (2002) Enzymatic properties of α-galactosidase from Trichoderma reesei in the hydrolysis of galacto-oligosaccharides. Enzyme Microb Technol 30:231–239

    Article  CAS  Google Scholar 

  22. Sierra C, Bernal MJ, Blasco J, Martínez R, Dalmau J, Ortuño I, Espín B, Vasallo MI, Gil D, Vidal ML, Infante D, Leis R, Maldonado J, Moreno JM, Román (2014) Prebiotic effect during the first year of life in healthy infants fed formula containing GOS as the only prebiotic: a multicenter, randomized, double-blind and placebo-controlled trial. Eur J Nutr. doi:10.1007/s00394-014-0689-9

    Google Scholar 

  23. Utami W, Meryandini A, Wiryawan KG (2013) Characterization of bacterial mannanase for hydrolyzing palm kernel cake to produce manno-oligosaccharides prebiotics. Media Peternakan 36:192–196

    Article  Google Scholar 

  24. Gilad O, Jacobsen S, Stuer-Lauridsen B, Pedersen MB, Garrigues C, Svensson B (2010) Combined transcriptome and proteome analysis of Bifidobacterium animalis subsp. lactis BB-12 grown on xylo-oligosaccharides and a model of their utilization. Appl Environ Microbiol 76:7285–7291

    Article  CAS  Google Scholar 

  25. Finegold SM, Li Z, Summanen PH, Downes J, Thames G, Corbett K, Dowd S, Krak M, Heber D (2014) Xylooligosaccharide increase Bifidobacteria but not Lactobacilli in human gut microbiota. Food Funct 5:436–445

    Article  CAS  Google Scholar 

  26. Park SF, Kroll RG (1993) Expression of listeriolysin and phosphatidylinositol-specific phospholipase C is repressed by the plant-derived molecule cellobiose in Listeria monocytogenes. Mol Microbiol 8:653–661

    Article  CAS  Google Scholar 

  27. Rastall RA, Hotchkiss AT Jr (2003) In: Eggleston G, Côté GL (eds) Oligosaccharides in food and agriculture. ACS Press, Washington, DC

    Google Scholar 

  28. Song J, Jiao LF, Xiao K, Luan ZS, Hu CH, Shi B, Zhan XA (2013) Cello-oligosaccharide ameliorates heat stress-induced impairment of intestinal microflora, morphology and barrier integrity in broilers. Anim Feed Sci Technol 185:175–181

    Article  CAS  Google Scholar 

  29. Newburg DS, Pickering LK, McCluer RH, Cleary TG (1990) Fucosylated oligosaccharides of human milk protect suckling mice from heat-stabile enterotoxin of Escherichia coli. J Infect Dis 162:1075–1080

    Article  CAS  Google Scholar 

  30. Xu Y, Fan L, Wang X, Yong Q, Yu S (2013) Simultaneous separation and quantification of linear xylo- and cello-oligosaccharides mixtures in lignocellulosics processing products on high performance anoin-exchange chromatography coupled with pulsed amperometric detection. Bioresources 8:3247–3259

    Google Scholar 

  31. Takigami S (2009) In: Phillips GO, Williams PA (eds) Handbook of hydrocolloid. Woodhead Publishing Ltd, Cambridge

    Google Scholar 

  32. Sakata S, Kitahara M, Sakamoto M, Hayashi H, Fukuyama M, Benno Y (2002) Unification of Bifidobacterium infantis and Bifidobacterium suis as Bifidobacterium longum. Int J Syst Evol Microbiol 52:1945–1951

    CAS  Google Scholar 

  33. Bao Y, Chen C, Newburg DS (2013) Quantification of neutral human milk oligosaccharides by graphitic carbon high-performance liquid chromatography with tandem mass spectrometry. Anal Biochem 433:28–35

    Article  CAS  Google Scholar 

  34. Cimbala JM (2011) Outliers. http://www.mne.psu.edu/me345/Lectures/Outliers.pdf

  35. Newburg DS, Ruiz-Palacios GM, Altaye M, Chaturvedi P, Meinzen-Derr J, Guerrero ML, Morrow AL (2004) Innate protection conferred by fucosylated oligosaccharides of human milk against diarrhea in breastfed infants. Glycobiology 14:253–263

    Article  CAS  Google Scholar 

  36. McGrath LT, Weir CD, Maynard S, Rowlands BJ (1992) Gas-liquid chromatogrophic analysis of volatile short chain fatty acids in fecal samples as pentafluorobenzyl esters. Anal Biochem 207:227–230

    Article  CAS  Google Scholar 

  37. Baere SD, Eeckhaut V, Steppe M, Maesschalck CD, Backer PD, Immerseel FV, Croubels SC (2013) Development of a HPLC-UV method for the quantitative determination of four short-chain fatty acids and lactic acid produced by intestinal bacteria during in vitro fermentation. J Pharm Biomed Anal 80:107–115

    Article  Google Scholar 

  38. Garcia A, Olmo B, Lopez-Gonzalvez A, Cornejo L, Rupérez FJ, Barbas C (2008) Capillary electrophoresis for short chain organic acids in faeces reference values in a mediterranean elderly population. J Pharm Biomed Anal 46:356–361

    Article  CAS  Google Scholar 

  39. Yang W, Adamec J, Regnier FE (2007) Enhancement of the LC/MS analysis of fatty acids through derivatization and stable isotope coding. Anal Biochem 79:5150–5157

    CAS  Google Scholar 

  40. Pettinella C, Lee SH, Cipollone F, Blair IA (2007) Targeted quantitative analysis of fatty acids in atherosclerotic plaques by high sensitivity liquid chromatography/tandem mass spectrometry. J Chromatogr B 850:168–176

    Article  CAS  Google Scholar 

  41. Koser SA (1923) Utilization of the salts of organic acids by the colon-aerogenes group. J Bacteriol 5:493–520

    Google Scholar 

  42. Rossi M, Corradini C, Amaretti A, Nicolini M, Pompei A, Zanoni S, Matteuzzi D (2005) Fermentation of fructooligosaccharides and inulin by Bifidobacteria: a comparative study of pure and fecal cultures. Appl Environ Microbiol 71:6150–6158

    Article  CAS  Google Scholar 

  43. Zhang M, Chen X, Zhang Z, Sun C, Chen L, He H, Zhou B, Zhang Y (2009) Purification and functional characterization of endo-β-mannanase MAN5 and its application in oligosaccharide production from konjac flour. Appl Microbiol Biotechnol 83:865–873

    Article  CAS  Google Scholar 

  44. Wang MF, You SP, Zhang SS, Qi W, Liu ZH, Wu WN, Su RX, He ZM (2013) Purification, characterization, and production of β-mannanase from Bacillus subtilis TJ-102 and its application in gluco-mannooligosaccharides preparation. Eur Food Res Technol 237:399–408

    Article  CAS  Google Scholar 

  45. Vernazza CL, Gibson GR, Rastall RA (2006) Carbohydrate preference, acid tolerance and bile tolerance in five strains of Bifidobacterium. J Appl Microbiol 100:846–853

    Article  CAS  Google Scholar 

  46. Macfarlane S, Macfarlane GT, Cummings JH (2006) Review article: prebiotics in the gastrointestinal tract. Aliment Pharmacol Ther 24:701–714

    Article  CAS  Google Scholar 

  47. Gibson GR, Probert HM, Loo JV, Rastall RA, Roberfroid MB (2004) Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 17:259–275

    Article  CAS  Google Scholar 

  48. Newburg DS, Grave G (2014) Recent advances in human milk glycobiology. Pediatr Res Special article 1–5

  49. Chapla D, Pandit P, Shah A (2012) Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics. Bioresour Technol 115:215–221

    Article  CAS  Google Scholar 

  50. Chua M, Chan K, Hocking T, Williams PA, Perry CJ, Baldwin TC (2012) Methodologies for the extraction and analysis of konjac glucomannan from corms of Amorphphallus konjac K. Koch Carbohydr Polym 87:2202–2210

    Article  CAS  Google Scholar 

  51. Tester RS, Al-Ghazzewi FH (2013) Mannans and health, with a special focus on glucomannans. Food Res Int 50:384–391

    Article  CAS  Google Scholar 

  52. Takahashi R, Kusakabe I, Kusama S, Sakurai Y, Murakami K, Maekawa A, Suzuki T (1984) Structures of glucomanno-oligosaccharides from the hydrolytic products of Konjac glucomannan produces by a β-mannanase from Streptomyces sp. Agric Biol Chem 48:2943–2950

    CAS  Google Scholar 

  53. Kusakabe I, Takahashi R (1988) Enzymatic preparation of β-1,4-mannooligosaccharides and β-1,4-glucomannooligosaccharides. Methods Enzymol 160:518–523

    Article  CAS  Google Scholar 

  54. Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, Tobe T, Clarke JM, Topping DL, Suzuki T, Taylor TD, Itoh K, Kikuchi J, Morita H, Hattori M, Ohno H (2011) Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469:543–549

    Article  CAS  Google Scholar 

  55. Satoh T, Odamaki T, Namura M, Shimizu T, Iwatsuki K, Nishimoto M, Kitaoka M, Xiao JZ (2013) In vitro comparative evaluation of the impact of lacto-N- biose, a major buiding block of human milk oligosaccharides, on the fecal microbiota of infants. Anaerobe 19:50–57

    Article  CAS  Google Scholar 

  56. Servin AL (2004) Antagonistic activities of Lactobacilli and Bifidobacteria against microbial pathogens. FEMS Microbiol Rev 28:405–440

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Institutes of Health grant number R01HD059140 (DSN), U01AI075563 (DSN) and P01HD013021 (DSN). Wang’s study was also supported by the Governmental Public Industry Research Special Funds for Projects (Grant No. 201404615), Graduate Research Innovation Projects of Jiangsu Province Ordinary University (CXZZ13_0545), and the Priority Academic Program Development of Jiangsu Higher Education Institution (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Newburg.

Ethics declarations

Conflict of interest

D.S.N. owns stock in Glycosyn, LLC, which makes human milk oligosaccharides. This potential competing financial interest is managed by Boston College. J.W., C.C., Z.Y., Y.H., and Q.Y. declare no potential conflicts of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Chen, C., Yu, Z. et al. Relative fermentation of oligosaccharides from human milk and plants by gut microbes. Eur Food Res Technol 243, 133–146 (2017). https://doi.org/10.1007/s00217-016-2730-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-016-2730-0

Keywords

Navigation