Skip to main content

Advertisement

Log in

Food traceability using the 87Sr/86Sr isotopic ratio mass spectrometry

  • Review Article
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Today, food traceability needs to develop suitable “robust” analytical methods, in terms of the precision and of the reliability of results, which can support modern legislative tools, aimed at guaranteeing food authenticity and origin and trying to avoid possible frauds. This review paper highlights the most recent results obtained with the use of the 87Sr/86Sr isotopic ratio technique, when applied to the traceability of the origin of different foods for human consumption, such as vegetables, beverages, dairy products, and meat and fish products. The instrumental techniques, with the relative methodologies and the quality of the final results, will be examined and commented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Carcea M, Brereton P, Hsu R, Kelly S, Marmiroli N, Melini F, Soukoulis C, Wenping D (2009) Food authenticity assessment: ensuring compliance with food legislation and traceability requirements. Qual Assur Saf Crops Foods 1(2):93–100

    Article  Google Scholar 

  2. http://www.iaea.org/About/Policy/GC/GC55/GC55InfDocuments/English/gc55inf-5-att2_en.pdf. Accessed 22 October 2015

  3. Brereton P (2013) In: Brereton P (ed) New analytical approaches for verifying the origin of food. Woodhead Publishing Series in Food Science, Technology and Nutrition: no. 245 Woodhead Publishing Limited, Cambridge, UK

  4. Craigh H (1961) Isotopic variations in meteoritic waters. Science 133:1702–1703

    Article  Google Scholar 

  5. Yurtsever Y, Gat JR (1981) Atmospheric waters. In: Gat JR, Gonfiantini R (eds) Stable isotope hydrology: deuterium and oxygen-18 in the water cycle. IAEA Vienna, Technical report series 210

  6. Chaudhuri S (1978) Strontium isotopic composition of several oilfield brines from Kansas and Colorado. Geochim Cosmochim Acta 42:329–331

    Article  CAS  Google Scholar 

  7. Yurtsever Y, Araguas-Araguas L (1993) Environmental isotope applications in Hydrology: an overview of the IAEA’s activities, experiences, and prospects. Tracers in Hydrology (Proceedings of the Yokohama Symposium, July 1993) IAHS Publ. no. 215: 3–20

  8. Capo RC, Stewart BW, Chadwick OA (1998) Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma 82:197–225

    Article  CAS  Google Scholar 

  9. Steiger RH, Jäger E (1977) Subcommission on Geochronology: convention on the use of decay constants in Geo- and cosmochronology. Earth Planet Sci Lett 36:359–362

    Article  CAS  Google Scholar 

  10. Goldstein SL, Jacobsen SB (1988) Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution. Earth Planet Sci Lett 87:249–265

    Article  CAS  Google Scholar 

  11. Voerkelius S, Lorenz GD, Rummel S, Quétel CR, Heiss G, Baxter M, Brach-Papa C, Deters-Itzelsberger P, Hoelzl S, Hoogewerff J, Ponzevera E, Van Bocxstaele M, Ueckermann H (2010) Strontium isotopic signatures of natural mineral waters, the reference to a simple geological map and its potential for authentication of food. Food Chem 118(4):933–940

    Article  CAS  Google Scholar 

  12. Stewart BW, Capo RC, Chadwich OA (1998) Quantitative strontium isotope models for weathering, pedogenesis and biogeochemical cycling. Geoderma 82:173–195

    Article  CAS  Google Scholar 

  13. Papanastassiou DA, Wasserburg GJ (1969) Initial strontium isotopic abundances and the resolution of small time differences in the formation of planetary objects. Earth Planet Sci Lett 5:361–367

    Article  CAS  Google Scholar 

  14. Nakano T, Na K, Tazawa K (1993) Atmospheric origin of Sr in land plants interfere from the isotopic ratio. Annu Rep Inst Geosci Univ Tsukuba 19:83–86

    Google Scholar 

  15. Faure G, Powell JL (1972) In: Strontium isotope geology, Minerals, Rocks and Mountains. Springer, Berlin. doi:10.1007/978-3-642-65367-4

  16. Notsu K (1983) Strontium isotope composition in volcanic rocks from the Northeast Japan arc. J Volcanol Geotherm Resour 18:531–548

    Article  CAS  Google Scholar 

  17. De Paolo DJ, Wasserburg GJ (1976) Nd isotopic variations and petrogenetic models. Geophys Res Lett 3:249–252

    Article  Google Scholar 

  18. Rosner M (2010) Geochemical and instrumental fundamentals for accurate and precise strontium isotope data of food samples: Comment on “Determination of the strontium isotope ratio by ICP-MS ginseng as a tracer of regional origin” (Choi et al., 2008). Food Chem 121:918–921

    Article  CAS  Google Scholar 

  19. Trincherini PR, Baffi C, Barbero P, Pizzoglio E, Spalla S (2014) Precise determination of strontium isotope ratios by TIMS to authenticate tomato geographical origin. Food Chem 145:349–355

    Article  CAS  Google Scholar 

  20. Kawasaki A, Oda H, Hirata T (2002) Determination of strontium isotope ratio of brown rice for estimating its provenance. Soil Sci Plant Nutr 48(5):635–640

    Article  CAS  Google Scholar 

  21. Yang YH, Wu FY, Liu ZC, Chu ZY, Xie LW, Yang JH (2012) Evaluation of Sr chemical purification technique for natural geological samples using common cation-exchange and Sr-specific extraction chromatographic resin prior to MC-ICP-MS or TIMS measurement. J Anal At Spectrom 27:516–522

    Article  CAS  Google Scholar 

  22. Horwitz EP, Dietz ML, Fisher DE (1991) Separation and preconcentration of strontium from biological, environmental, and nuclear waste samples by extraction chromatography using a crown ether. Anal Chem 63(5):522–525

    Article  CAS  Google Scholar 

  23. Günther-Leopold I, Wernli B, Kopajtic Z, Günther D (2004) Measurement of isotope ratios on transient signals by MC-ICP-MS. Anal Bioanal Chem 378:241–249

    Article  CAS  Google Scholar 

  24. Garcia-Ruiz S, Moldovan M, Alonso IG (2007) Separation of rubidium and strontium for on-line inductively coupled plasma mass spectrometry determination of strontium isotope ratios. J Chromatogr A 114(2):274–281

    Article  CAS  Google Scholar 

  25. Waight T, Baker J, Peate D (2002) Sr isotope ratio measurements by double-focusing MC-ICP-MS: techniques, observations and pitfalls. Int J Mass Spectrom 221:229–244

    Article  CAS  Google Scholar 

  26. Vance D, Thirlwall M (2002) An assessment of mass discrimination in MC-ICP-MS using Nd isotopes. Chem Geol 185:227–240

    Article  CAS  Google Scholar 

  27. Lee DC, Halliday AN (1995) Precise determinations of the isotopic compositions and atomic weights of molybdenum, tellurium, tin and tungsten using ICP source magnetic sector multiple collector mass spectrometry. Int J Mass Spectrom Ion Process 146–147:35–46

    Article  Google Scholar 

  28. Smet I, De Muynck D, Vanhaecke F, Elburg M (2010) From volcanic rock powder to Sr and Pb isotope ratios: a fit-for-purpose procedure for multi-collector ICP-mass spectrometric analysis. J Anal At Spectrom 25:1025–1032

    Article  CAS  Google Scholar 

  29. McArthur JM, Rio D, Massari F, Castradori D, Bailey TR, Thirlwall M, Houghton S (2006) A revised Pliocene record for marine 87Sr/86Sr used to date an interglacial event recorded in the Cockburn Island Formation, Antarctic Peninsula. Palaeogeogr Palaeoclimatol Palaeoecol 242:126–136

    Article  Google Scholar 

  30. Wotte T, Javier Alvaro J, Shields GA, Brown B, Brasier DM, Veizer J (2007) C, O and Sr isotope stratigraphy across the Lower-Middle Cambrian transition zone of the Cantabrian Zone (Spain) and the Montagne Noire (France), West Gondwana. Palaeogeogr Palaeoclimatol Palaeoecol 256:47–70

    Article  Google Scholar 

  31. Rodushkin I, Bergman T, Douglas G, Engström E, Sörlin D, Baxter DC (2007) Authentication of Kalix (N.E. Sweden) vendace caviar using inductively coupled plasma-based analytical techniques: evaluation of different approaches. Anal Chim Acta 583:310–318

    Article  CAS  Google Scholar 

  32. Fietzke J, Eisenhauer A (2006) Determination of temperature-dependent stable strontium isotope (88Sr/86Sr) fractionation via bracketing standard MC-ICP-MS. Geochem Geophys Geosyst 7(8):1–6

    Article  CAS  Google Scholar 

  33. Halicz L, Segal I, Fruchter N, Stein M, Lazar B (2008) Strontium stable isotopes fractionate in the soil environments? Earth Planet Sci Lett 272:406–411

    Article  CAS  Google Scholar 

  34. Yang L, Peter C, Panne U, Sturgeon RE (2008) Use of Zr for mass bias correction in strontium isotope ratio determinations using MC-ICP-MS. J Anal At Spectrom 23:1269–1274

    Article  CAS  Google Scholar 

  35. Oda H, Kawasaki A, Hirata T (2001) Determination of the geographic origin of brown-rice with isotope ratios of 11B/10B and 87Sr/86Sr. Anal Sci 17(Suppl):i1627–i1630

    Google Scholar 

  36. Kawasaki A, Oda H (1999) Distribution of boron concentrations and boron isotope ratios in brown rice and soil extracts determined by ICP-MS. In: Hollande G, Tanner SD (eds) Plasma source mass spectrometry, new developments and applications. Cambridge University Press, Cambridge

    Google Scholar 

  37. Yasui A, Shindoh K (2000) Determination of the geographical origin of brown-rice with trace element composition. Bunseki Kagaku 49:405–410

    Article  CAS  Google Scholar 

  38. Ariyama K, Shinozaki M, Kawasaki A (2012) Determination of the geographic origin of rice by chemometrics with strontium and lead isotope ratios and multielement concentrations. J Agric Food Chem 60:1628–1634

    Article  CAS  Google Scholar 

  39. Dambrine E, Loubet M, Vega JA, Lissarague A (1997) Localisation of mineral uptake by roots using Sr isotopes. Plant Soil 192:129–132

    Article  CAS  Google Scholar 

  40. Åberg G, Jacks G, Hamilton JP (1989) Weathering rates and 87Sr/86Sr ratios: an isotopic approach. J Hydrol 109:65–78

    Article  Google Scholar 

  41. Swoboda S, Brunner M, Boulyga SF, Galler P, Horacek M, Prohaska T (2008) Identification of Marchfeld asparagus using isotope ratio measurement by MC-ICP-MS. Anal Bioanal Chem 390(2):487–494

    Article  CAS  Google Scholar 

  42. Prohaska T, Latkoczy C, Schultheis G, Teschler-Nicola M, Stingeder G (2002) Investigation of Sr isotope ratios in prehistoric human bones and teeth using laser ablation ICP-MS and ICP-MS after Rb/Sr separation. J Anal At Spectrom 17:887–891

    Article  CAS  Google Scholar 

  43. Albarède F, Télouk P, Blichert-Toft J, Boyet M, Agranier A, Nelson B (2004) Precise and accurate isotopic measurements using multiple-collector ICP-MS. Geochim Cosmochim Acta 68:2725–2744

    Article  CAS  Google Scholar 

  44. Choi SM, Lee HS, Lee GH, Han JK (2008) Determination of strontium isotope ratio by ICP-MS ginseng as a tracer of regional origin. Food Chem 108:1149–1154

    Article  CAS  Google Scholar 

  45. Yang L (2009) Accurate and precise determination of isotope ratios by MC-ICP-MS: a review. Mass Spectrom Rev 28:990–1011

    Article  CAS  Google Scholar 

  46. Brunner M, Katona R, Stefanka Z, Prohaska T (2010) Determination of the geographical origin of processed spice using multielement and isotopic pattern on the example of Szegedi paprika. Eur Food Res Technol 231:623–634

    Article  CAS  Google Scholar 

  47. Bong YS, Shin WJ, Gautam MK, Jeong YJ, Lee AR, Jang CS, Lim YP, Chung GS, Lee KS (2012) Determining the geographical origin of Chinese cabbages using multielement composition and strontium isotope ratio analyses. Food Chem 135:2666–2674

    Article  CAS  Google Scholar 

  48. Ariyama K, Nishida T, Noda T, Kadokura M, Yasui A (2006) Effects of fertilization, crop year, variety, and provenance factors on mineral concentration in onions. J Agric Food Chem 54:3341–3350

    Article  CAS  Google Scholar 

  49. Taylor VF, Longerich HP, Greenough JD (2003) Multielement analysis of Canadian wines by inductively coupled plasma mass spectrometry (ICP-MS) and multivariate statistics. J Agric Food Chem 51:856–860

    Article  CAS  Google Scholar 

  50. Ariyama K, Aoyama Y, Mochizuki A, Homuura Y, Kadokura M, Yasui A (2007) Determination of the geographical origin of onion between three main production areas in Japan and other countries by mineral composition. J Agric Food Chem 55:347–354

    Article  CAS  Google Scholar 

  51. Giacomo FD, Signore AD, Ciaccio M (2007) Determining the geographic origin of potatoes using mineral an trace element content. J Agric Food Chem 55:860–866

    Article  CAS  Google Scholar 

  52. Horn P, Schaaf P, Holbach H, Hӧelzl B, Eschnauer S (1993) 87Sr/86Sr from rock and soil into vine and wine. Z Lebensm-Unters Forsch 196:407–409

    Article  CAS  Google Scholar 

  53. Lancelot J, Herrerias J, Verdoux P, Lurton L (1999) Proceedings of the fifth European symposium on food authenticity, La Baule, France

  54. Barbaste M, Robinson K, Guilfoyle S, Medina B, Lobinski R (2002) Precise determination of the strontium isotope ratios in wine by ICP-SF-MC-MS. J Anal At Spectrom 17:135–137

    Article  CAS  Google Scholar 

  55. Darbyshire DPF, Sewell C (1997) Nd and Sr isotope geochemistry of plutonic rocks from Honk Kong: implications for granite petrogenesis, regional structure and crustal evolution. Chem Geol 193:81–93

    Article  Google Scholar 

  56. Holmberg L (2010) Wine fraud. Int J Wine Res 2:105–113

    Article  Google Scholar 

  57. Vorster C, Greef I, Coetzee PP (2010) The determination of 11B/10B and 87Sr/86Sr isotope ratios by quadrupole-based ICP-MS for the fingerprinting of South African wines. S Afr J Chem 63:207–214

    Google Scholar 

  58. Di Paola-Naranjo RD, Baroni V, Podio NS, Rubinstein HR, Fabni MB, Badini RG, Inga M, Ostera HA, Cagnoni M, Callegos E, Gautier E, Peral-Garcia P, Hoogewerff J, Wunderlin DA (2011) J Agric Food Chem 59:7854–7865

    Article  CAS  Google Scholar 

  59. Dehelean A, Voica C (2012) Determination of lead and strontium isotope ratios in wines by inductively coupled plasma mass spectrometry. Rom J Phys 57(7–8):1194–1203

    CAS  Google Scholar 

  60. Martins P, Madeira M, Monteiro F, Bruno de Sousa R, Curvelo-Garcia AS, Catarino S (2014) 87Sr/86Sr ratio in vineyard soils from Portuguese denominations of origin and its potential for origin authentication. J Int Sci Vigne Vin 48(1):21–29

    CAS  Google Scholar 

  61. Durante C, Baschieri C, Bertacchini L, Bertelli D, Cocchi M, Marchetti A, Manzini D, Papotti G, Sighinolfi S (2015) An analytical approach to Sr isotope ratio determination in Lambrusco wines for geographical traceability purposes. Food Chem 173:557–563

    Article  CAS  Google Scholar 

  62. Marchionni S, Braschi E, Tommasini S, Bollati A, Cifelli F, Mulinacci N, Mattei M, Conticelli S (2013) High-precision 87Sr/86Sr analysis in wines and their use as a geological fingerprint for tracing geographical provenance. J Agric Food Chem 61:6822–6831

    Article  CAS  Google Scholar 

  63. Petrini R, Sansone L, Slejko FF, Buccianti A, Marcuzzo P, Tomasi D (2015) The 87Sr/86Sr strontium isotopic systematics applied to Glera vineyards: a tracer for the geographical origin of the Prosecco. Food Chem 170:138–144

    Article  CAS  Google Scholar 

  64. Castonina F, Masi U (2011) Sr isotopes and Romagna wines: an opportunity for better trading? Environ Qual 7:41–48. doi:10.1092/issn.2281-4485/3832

    Google Scholar 

  65. Vinciguerra V, Stevenson R, Pedneault K, Poirier A, Hélie JF, Widory D (2015) Strontium isotope characterization of wines from Quebec (Canada) terroir. Proc Earth Planet Sci 13:252–255

    Article  CAS  Google Scholar 

  66. Castiñeira Gómez MdM, Feldmann I, Jakubowski N, Andersson JT (2004) Classification of German wines with certified brand of origin by multielement quantitation and pattern recognition techniques. J Agric Food Chem 52:2962–2974

    Article  CAS  Google Scholar 

  67. Garcia-Ruiz S, Moldovan M, Fortunato G, Wunderli S, Garcia Alonso JI (2007) Evaluation of strontium isotope abundance ratios in combination with multi-elemental analysis as a possible tool to study the geographical origin of ciders. Anal Chim Acta 590:55–66

    Article  CAS  Google Scholar 

  68. Alonso-Salces RM, Guyot S, Herrero C, Berruela LA, Drilleau JF, Gallo B, Vicente F (2004) Chemometrics characterization of Basque and French ciders according to their polyphenolic profiles. Anal Bioanal Chem 379(3):464–475

    Article  CAS  Google Scholar 

  69. Thiel G, Geisler G, Blechschmidt I, Danzer K (2004) Determination of trace elements in wines and classification according to their provenance. Anal Bioanal Chem 378:1630–1636

    Article  CAS  Google Scholar 

  70. Coetzee PP, Steffens FE, Eiselen RJ, Augustyn OP, Balcaen L, Vanhaecke F (2005) Multi-element analysis of South African wines by ICP-MS and their classification according to geographical origin. J Agric Food Chem 53:5060–5066

    Article  CAS  Google Scholar 

  71. Košir IJ, Kocjančič M, Ogrinc N, Kidrič J (2001) Use of SNIF-NMR and IRMS in combination with chemometric methods for the determination of chaptalisation and geographical origin of wines (the example of Slovenian wines). Anal Chim Acta 429:195–206

    Article  Google Scholar 

  72. Gremaud G, Quaile S, Piantini U, Pfmatter E, Corvi C (2004) Characterization of Swiss vineyards using isotopic data in combination with trace elements and classical parameters. Eur Food Res Technol 219:97–104

    Article  CAS  Google Scholar 

  73. Purejuice project. http://www.purejuice.org. Accessed 03 November 2015

  74. EUROFINS. http://www.eurofins.com. Accessed 25 September 2015

  75. Rummel S, Hoelzl S, Horn P, Rossmann A, Schlicht C (2010) The combination of stable isotope abundance ratios of H, C, N and S with 87Sr/86Sr for geographical origin assignment of orange juices. Food Chem 118:890–900. doi:10.1016/j.foodchem.2008.05115

    Article  CAS  Google Scholar 

  76. CEN prENV 13070 (1998) Fruit and vegetables juices—determination of the stable carbon isotope ratio (13C/12C) in the pulp of the fruit juices—method using isotope ratio mass spectrometry In: CEN/TC 174 fruit and vegetables juices—methods of analysis, European Committee for Standardization

  77. Council Directive (80/777/EEC) of 15 July 1980 on the approximation of the laws of the Member States relating to the exploitation and marketing of natural mineral waters. (OJ L 229/1; 30 August 1980)

  78. Directive 96/70/EC of the European parliament and of the Council of 28 October 1996 amending Council Directive 80/777/EEC on the approximation of the laws of the member States relating to the exploitation and marketing of natural mineral waters. (OJ No L 299/26; 23 November 1996)

  79. Commission Directive 2003/40/EC of 16 May 2003 establishing the list, concentration limits and labelling requirements for the constituents of natural mineral waters and the conditions for using ozone-enriched air for the treatment of natural mineral waters and spring waters. (OJ L 126/34; 22 May 2003)

  80. Council Regulation (EC) No 692/2003 of 8 April 2003 amending Regulation (EEC) No 2018/92 on the protection of geographical indications and designations of origin for agricultural products and foodstuffs. (OJ L 99/1; 17 April 2003)

  81. Hölting B (1989) Hydrogeologie Auflage. Stuttgard; Ferdinand Enke Verlag 3:441

    Google Scholar 

  82. InterregIIIA-Projektbericht (2008) Grenzüberschreitende Bewirtschaftung des Grundwassers im Raum Hegau—Schaffhausen. Unpublished Final Report, InterregIIIA Alpenehein Bodensee Hochrhein

  83. Pawlewicz MJ, Steinshouer DW, Gautier DL (2003) Map Showing Geology. Oil and Gas Fields and Geologic Provinces of Europe including Turkey. Open File Report 97-4701 Central region Energy resources team, U.S. Department of the Interior U.S. Geological Survey (http://pubs.usgs.gov/of/1997/ofr-97-470/OF97-4701/index.htm. Accessed 05 October 2015

  84. Beard BL, Johnson CM (2000) Strontium isotope composition of skeletal material can determine the birthplace and geographic mobility of humans and animals. J Forensic Sci 45(5):1049–1061

    Article  CAS  Google Scholar 

  85. Yang YH, Wu FY, Xie LW, Yang JH, Zhang YB (2011) High-precision direct determination of the 87Sr/86Sr isotope ratio of bottled Sr-rich natural mineral drinking water using MC-ICP-MS. Spectrochim Acta Part B 66:656–660

    Article  CAS  Google Scholar 

  86. Yang YH, Chu ZY, Wu FY, Xie LW, Yang JH (2011) Precise and accurate determination of Sm, Nd concentrations and Nd isotopic compositions in geological samples by MC-ICP-MS. J Anal At Spectrom 26:1237–1244

    Article  CAS  Google Scholar 

  87. Crittenden RG, Andrew AS, Lefournour M, Young MD, Middleton H, Stockmann R (2007) Determining the geographic origin of milk in Australasia using multi-element stable isotope ratio analysis. Int Dairy J 17:421–428

    Article  CAS  Google Scholar 

  88. Epstein S, Mayeda TK (1953) Variation of the 18O/16O ratio in natural waters. Geochim Cosmochim Acta 4:213–224

    Article  CAS  Google Scholar 

  89. Geoscience Australia (2005) Scanned geology maps. Accessed 30 June 2005, from http://www.geoscience.gov.au. Accessed 22 September 2015

  90. Martin GG, Martin YL, Naulet N, McManus JD (1996) Application of 2H SNIF-NMR and 13C SIRA-MS analyses to maple syrup: detection of added sugars. J Agric Food Chem 44(10):3206–3213

    Article  CAS  Google Scholar 

  91. Rossmann A, Haberhauer G, Hölzl S, Horn P, Pichlmayer F, Voerkelius S (2000) The potential of multielement stable isotope analysis for regional origin assignment of butter. Eur Food Res Technol 211:32–40

    Article  CAS  Google Scholar 

  92. Kornexl BE, Werner T, Rossmann A, Schmidt HL (1997) Measurement of stable isotope abundances in milk and milk ingredients—a possible tool for origin assignment and quality control. Z Lebensm-Unters Forsch A 255:19–24

    Article  Google Scholar 

  93. Rossmann A, Kornexl BE, Versini G, Pichlmayer F, Lamprecht G (1998) Origin assignment of milk from alpine regions by multielement stable isotope ratio analysis (SIRA). J Food Sci Nutr 27:9–21

    CAS  Google Scholar 

  94. Metges C, Kempe K, Schmidt HL (1990) Dependence of the carbon-isotope contents of breath carbon dioxide, milk, serum and rumen fermentation products on the δ13C value of food in dairy cows. Br J Nutr 63:187–196

    Article  CAS  Google Scholar 

  95. Ammann M, Siegwolf R, Pichlmayer F, Suter M, Saurer Brunold C (1999) Estimating the uptake of traffic-derived NO2 from 15N abundance in Norway spruce needles. Oecologia 118:124–131

    Article  Google Scholar 

  96. Rossmann A, Trimborn P (1996) Gehalte an stabilen Sauerstoff-Isotopen in Wasser von Apfelsaftkonzentrat als Kriterium für den Nachweis einer Zuckerung. Z Lebensm-Unters Forsch 203(3):277–282

    Article  CAS  Google Scholar 

  97. Pillonel L, Badertscher R, Froidevaux P, Haberhauer G, Hӧlzl S, Horn P, Jakob A, Pfammatter E, Piantini U, Rossmann A, Tabacchi R, Bosset JO (2003) Stable isotope ratios, major, trace and radioactive elements in emmenthal cheeses of different origins. Lebensm-Wiss Technol 36:615–623

    Article  CAS  Google Scholar 

  98. Pillonel L, Badertscher R, Bütikofer U, Casey M, Dalla Torre M, Lavanchy P, Meyer J, Tabacchi R, Bosset JO (2002) Analytical methods for the determination of the geographical origin of Emmenthal cheese. Main frame of the project; chemical, biochemical, microbiological, and sensory analyses. Eur Food Res Technol 215:260–267

    Article  CAS  Google Scholar 

  99. Fortunato G, Mumic K, Wunderli S, Pillonel L, Bosset JO, Gremaud G (2004) Application of strontium isotope abundance ratios measured by MC-ICP-MS for food authentication. J Anal At Spectrom 19:227–234

    Article  CAS  Google Scholar 

  100. Rossmann A (2001) Determination of stable isotope ratios in food analysis. Food Rev Int 17(3):347–381

    Article  CAS  Google Scholar 

  101. Bontempo L, Larcher R, Camin F, Hӧlzl S, Rossmann A, Horn P, Nicolini G (2011) Elemental and isotopic characterization of typical Italian alpine cheeses. Int Dairy J 21:441–446

    Article  CAS  Google Scholar 

  102. Piasentier E, Valusso R, Camin F, Versini G (2003) Stable isotope ratio analysis for authentication of lamb meat. Meat Sci 64:239–247

    Article  CAS  Google Scholar 

  103. Camin F, Bontempo L, Monahan FJ, Hoogewerff J, Rossmann A (2007) Multi-element (H, C, N, S) stable isotope characteristics of lamb meat from different European regions. Anal Bioanal Chem 389:309–320

    Article  CAS  Google Scholar 

  104. Franke BM, Gremaud G, Hadorn R, Kreuzer M (2005) Geographic origin of meat-elements of an analytical approach to its authentication. Eur Food Res Technol 221:493–503

    Article  CAS  Google Scholar 

  105. Franke BM, Haldimann M, Reimann J, Baumer B, Gremaud G, Hadorn R, Bosset JO, Kreuzer M (2007) Indications for the applicability of element signature analysis for the determination of the geographic origin of dried beef and poultry meat. Eur Food Res Technol 225:501–509

    Article  CAS  Google Scholar 

  106. Franke BM, Koslitz S, Micaux F, Piantini U, Maury V, Pfammatter E, Wunderli S, Gremaud G, Bosset J, Hadorn R, Kreuzer M (2008) Tracing the geographic origin of poultry meat and dried beef with oxygen and strontium isotope ratios. Eur Food Res Technol 226:761–769

    Article  CAS  Google Scholar 

  107. Heaton K, Kelly SD, Hoogewerff J, Woolfe M (2008) Verifying the geographical origin of beef: the application of multi-element isotope and trace element analysis. Food Chem 107:506–515

    Article  CAS  Google Scholar 

  108. Rummel S, Dekant CH, Hölzl S, Kelly SD, Baxter M, Marigheto N, Quetel CR, Larcher R, Nicolini G, Froschl H, Ueckermann H, Hoogewerff J (2012) Sr isotope measurements in beef—analytical challenge and first results. Anal Bioanal Chem 402:2837–2848

    Article  CAS  Google Scholar 

  109. TRACE project FP6. http://www.trace.eu.org/. Accessed 12 October 2015

  110. Kim KS, Kim JS, Hwang IM, Jeong IS, Khan N, Lee SI, Jeon DB, Song YH, Kim KS (2013) Application of stable isotope ratio analysis for origin authentication of pork. Korean J Food Sci Anal 33(1):1–6

    Article  Google Scholar 

  111. Schmidt HL (1986) Food quality control and studies on human nutrition by mass spectrometric and nuclear magnetic resonance isotope ratio determination. Fresenius J Anal Chem 324(7):760–766

    Article  CAS  Google Scholar 

  112. Martinsohn J (2013) In: Brereton P (ed) New analytical approaches for verifying the origin of food. Woodhead Publishing Series in Food Science, Technology and Nutrition; no. 245. Woodhead Publishing Limited, Cambridge, UK

  113. Kennedy BP, Folt CL, Blum JD, Chamberlain CP (1997) Natural isotope markers in salmon. Nature 387:766

    Article  CAS  Google Scholar 

  114. Fisher RS, Stueber AM (1976) Strontium isotopes in selected streams within Susquehanna River Basin. Water Resour Res 12(5):1061–1068. doi:10.1029/WRO12i005p01061

    Article  CAS  Google Scholar 

  115. Åberg G (1995) The use of natural strontium isotopes as tracers in environmental studies. Water Air Soil Pollut 79:309–322

    Article  Google Scholar 

  116. Campana SE, Neilson JD (1985) Microstructure of fish otoliths. Can J Fish Aquat Sci 42:1014–1032

    Article  Google Scholar 

  117. Elsdon TS, Wells BK, Campana SE, Gillanders BM, Jones CM, Limburg KE, Secor DH, Thorrold SR, Walther BD (2008) Otolith chemistry to describe movements and life-history parameters of fishes: hypothesis, assumptions, limitations and inferences. Oceanogr Mar Biol Annu Rev 46:297–330

    Article  Google Scholar 

  118. Muhlfeld CC, Thorrold SR, McMahon TE, Marotz B (2012) Estimating westslope cutthroat trout (Oncorhynchus clarkii lewisi) movements in a river network using strontium isoscapes. Can J Fish Aquat Sci 69:906–915

    Article  CAS  Google Scholar 

  119. Campana SE, Fowler AJ, Jones CM (1994) Otolith elemental fingerprinting for stock identification of Atlantic cod (Gadus morhua) using Laser Ablation ICP-MS. Can J Fish Aquat Sci 51:1942–1950

    Article  Google Scholar 

  120. Kennedy BP, Blum JD, Folt CL, Nislow KH (2000) Using strontium isotopic signatures as fish markers: methodology and application. Can J Fish Aquat Sci 57:2280–2292

    Article  CAS  Google Scholar 

  121. Kennedy BP, Klaue A, Blum JD, Folt CL, Nislow KH (2002) Reconstructing the lives of fish using Sr isotopes in otoliths. Can J Fish Aquat Sci 59:925–929

    Article  Google Scholar 

  122. Kennedy BP, Chamberlain CP, Blum JD, Nislow KH, Folt CL (2005) Comparing naturally occurring stable isotopes of nitrogen, carbon, and strontium as markers for the rearing locations of Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 62:48–57

    Article  CAS  Google Scholar 

  123. Martin J, Bareille G, Berail S, Pecheyran C, Daverat F, Bru N, Tabouret H, Donard O (2013) Spatial and temporal variations in otolith chemistry and relationships with water chemistry: a useful tool to distinguish Atlantic salmon Salmo salar parr from different natal streams. J Fish Biol 82:1556–1581

    Article  CAS  Google Scholar 

  124. Martin J, Bareille G, Berail S, Pécheyran C, Gueraud F, Lange F, Daverat F, Bru N, Beall E, Barracou D, Donard O (2013) Persistence of a southern Atlantic salmon population: diversity of natal origins from otolith elemental and Sr isotopic signatures. Can J Fish Aquat Sci 70:182–197

    Article  CAS  Google Scholar 

  125. Ingram BL, Weber PK (1999) Salmon origin in California’s Sacramento-San Joaquin river system as determined by otolith strontium isotopic composition. Geology 27(9):851–854

    Article  Google Scholar 

  126. Barnett-Johnson R (2004) Determining the importance of stock structure, and production sources to population dynamics of California Chinook salmon using otoliths as geochemical signatures. Coastal Environmental Quality Initiative paper no. 010 http://repositories.cdlib.org/ucmarine/ceqi/010. Accessed 10 September 2015

  127. Barnett-Johnson R, Ramos FC, Grimes CB, MacFarlane RB (2005) Validation of Sr isotopes in otoliths by laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS): opening avenues in fisheries science applications. Can J Fish Aquat Sci 62:2425–2430

    Article  CAS  Google Scholar 

  128. Barnett-Johnson R, Pearson TE, Ramos FC, Grimes CB, MacFerlane RB (2008) Tracking natal origins of salmon using isotopes, otoliths, and landscape geology. Limnol Oceanogr 53(4):1633–1642

    Article  CAS  Google Scholar 

  129. Barnett-Johnson R, Teel DJ, Casillas E (2010) Genetic and otolith isotopic markers identify salmon populations in the Columbia river at broad and fine geographic scales. Environ Biol Fishes 89:533–546

    Article  Google Scholar 

  130. Babaluk JA, Reist JD, Sahanatien VA, Halden NM, Campbell JL, Teesdale WJ (1998) In: Munro NWP, Willison JHM (eds) Linking protected areas with working landscapes conserving biodiversity, proceedings of the third international conference on science and management of protected areas. Science and Management of Protected Areas, Wolfville, Canada

    Google Scholar 

  131. Outridge PM, Chenery SR, Babaluk JA, Reist JD (2002) Analysis of geological Sr isotope markers in fish otoliths with subannual resolution using laser ablation-multicollector-ICP-mass spectrometry. Environ Geol 42:891–899

    Article  CAS  Google Scholar 

  132. Sturm M (2008) Migration studies of fish by measurement of strontium isotope ratios and multi-elemental patters in otoliths using LA-ICP-MS. Diploma thesis. Department of Chemistry, Division: Analytical Chemistry. Universität für Bodenkultur Wien

  133. Milton DA, Chenery SR (2003) Movement patterns of the tropical shad hilsa (Tenualosa ilisha) inferred from transects of 87Sr/86Sr isotope ratios in their otoliths. Can J Fish Aquat Sci 60:1376–1385

    Article  Google Scholar 

  134. Milton DA, Chenery SR (2001) Can otolith chemistry detect the population structure of the shad Tenualosa ilisha? Comparison with the results of genetic and morphological studies. Mar Ecol Prog Ser 222:239–251

    Article  Google Scholar 

  135. Alam A (2002) Comparison of the parasite fauna of Tenualosa ilisha from different locations in Bangladesh. In: Blaber SJM, Brewer DJ, Milton DA, Biano C (eds) International terubok conference proceedings. Sarawak Development Corporation, Kuching, Malaysia

    Google Scholar 

  136. Walther BD, Thorrold SR (2006) Water, not food, contributes the majority of strontium and barium deposited in the otoliths of a marine fish. Mar Ecol Prog Ser 311:125–130

    Article  CAS  Google Scholar 

  137. Wolff BA, Johnson BM, Breton AR, Martinez PJ, Winkelman DL (2012) Origins of invasive piscivores determined from the strontium isotope ratio (87Sr/86Sr) of otoliths. Can J Fish Aquat Sci 69(4):724–739

    Article  CAS  Google Scholar 

  138. Wolff BA, Johnson BM, Landress CM (2013) Classification of hatchery and wild fish using natural geochemical signatures in otoliths, fin rays, and scales of an endangered catostomid. Can J Fish Aquat Sci 70:1775–1784

    Article  Google Scholar 

  139. Pouilly M, Point D, Sondag F, Henry M, Santos R (2014) Geographical origin of Amazonian freshwater fishes fingerprinted by 87Sr/86Sr ratios on fish otoliths and scales. Environ Sci Technol 48(16):8980–8987. doi:10.1021/es500071w

    Article  CAS  Google Scholar 

  140. Guillou C (2010) Management of the EU Wine Databank. JRC CT 31397

  141. Molkentin J, Giesemann A (2007) Differentiation of organically and conventionally produced milk by stable isotope and fatty acid analysis. Anal Bioanal Chem 388:297–305

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Baffi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or living animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baffi, C., Trincherini, P.R. Food traceability using the 87Sr/86Sr isotopic ratio mass spectrometry. Eur Food Res Technol 242, 1411–1439 (2016). https://doi.org/10.1007/s00217-016-2712-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-016-2712-2

Keywords

Navigation