Skip to main content
Log in

Sensory, physicochemical and microbiological properties of dry-cured formed ham: comparison of four different binding systems

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The effectiveness of four different cold-set binding systems [microbial transglutaminase (TG), alginate (AL), glucono-δ-lactone (GdL) and starter culture (MO)] for manufacturing dry-cured formed ham was evaluated. The effects of tumbling time (0, 6 and 18 h) and processing time (7, 14, 21 and 28 days) on physicochemical, sensory and microbiological properties of dry-cured formed ham compared to traditional non-formed raw ham were analyzed. The physicochemical analysis showed that the tumbling time of 18 h leads to changes in the characteristic properties of dry-cured formed ham. Samples subjected to a prolonged tumbling time showed a higher concentration of sodium chloride and sodium nitrite, but a reduced weight loss. Independent of tumbling time the formed samples had a lower pH value than the corresponding non-formed samples. Due to the larger specific surface area of formed samples also the microbiological characteristics were changed. The counts of mesophilic aerobic bacteria and lactic acid bacteria in formed samples were 2–4 log cycles higher than in traditional raw ham. The sensory quality of all dry-cured formed hams depended on processing time and binding system. The sensory panel preferred TG hams because of the close similarity to the non-formed hams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Beneke B, Ehlers-Rozecki BJ, Bewig M, Islam R, Renartz M, Hildebrandt G (2011) Verbraucher wünscht Klarheit und Ehrlichkeit. Zusammengefügter Rohschinken - Verbrauchertäuschung oder mehr? Fleischwirtschaft 91(1):44–48

    Google Scholar 

  2. Islam R (2011) “Klebeschinken” Verbrauchertäuschung durch Enzyme? Dtsch Lebensm-Rundsch 107(5):216–2018

    CAS  Google Scholar 

  3. Kaufmann A, Koppel R, Widmer M (2012) Determination of microbial transglutaminase in meat and meat products. Food Addit Contam A Chem Anal Control Exposure Risk Assess 29(9):1364–1373. doi:10.1080/19440049.2012.691557

    Article  CAS  Google Scholar 

  4. Boles JA (2011) Use of cold-set binders in meat systems. In: Kerry JP, Kerry JF (eds) Processed meats: improving safety, nutrition and quality. Woodhead Publishing, Oxford, pp 270–298

    Chapter  Google Scholar 

  5. Lennon AM, McDonald K, Moon SS, Ward P, Kenny TA (2010) Performance of cold-set binding agents in re-formed beef steaks. Meat Sci 85(4):620–624

    Article  CAS  Google Scholar 

  6. Kanaji T, Ozaki H, Takao T, Kawajiri H, Ide H, Motoki M, Shimonishi Y (1993) Primary structure of microbial transglutaminase from Streptoverticillium sp. strain s-8112. J Biol Chem 268(16):11565–11572

    CAS  Google Scholar 

  7. Plazinski W (2011) Molecular basis of calcium binding by polyguluronate chains. Revising the egg-box model. J Comput Chem 32(14):2988–2995

    Article  CAS  Google Scholar 

  8. Hong GP, Chin KB (2010) Effects of microbial transglutaminase and sodium alginate on cold-set gelation of porcine myofibrillar protein with various salt levels. Food Hydrocolloids 24(4):444–451

    Article  CAS  Google Scholar 

  9. Farouk MM (2010) Restructured whole-tissue meats. In: Toldrá F (ed) Handbook of meat processing. Wiley-Blackwell, Iowa, pp 399–421

    Chapter  Google Scholar 

  10. Lautenschläger R (2011) Deklaration macht den Unterschied - Technologische und sensorische Qualität von vorverpacktem Rohschinkenauschnitt. Mitteilungsblatt Fleischforschung Kulmbach 50(149):207–214

    Google Scholar 

  11. Andrés-Bello A, Barreto-Palacios V, García-Segovia P, Mir-Bel J, Martínez-Monzó J (2013) Effect of pH on color and texture of food products. Food Eng Rev 5(3):158–170

    Article  Google Scholar 

  12. Romero de Ávila MD, Ordóñez JA, de la Hoz L, Herrero AM, Cambero MI (2010) Microbial transglutaminase for cold-set binding of unsalted/salted pork models and restructured dry ham. Meat Sci 84(4):747–754

    Article  Google Scholar 

  13. Harmon CJ, Means WJ, Kemp JD (1992) Bind, sensory and chemical properties of restructured dry-cured hams. J Food Sci 57(2):322–324

    Article  CAS  Google Scholar 

  14. Montero P, Perez-Mateos M (2002) Effects of Na+, K+ and Ca2+ on gels formed from fish mince containing a carrageenan or alginate. Food Hydrocolloids 16:375–385

    Article  CAS  Google Scholar 

  15. Goh CH, Heng PWS, Chan LW (2012) Alginates as a useful natural polymer for microencapsulation and therapeutic applications. Carbohydr Polym 88:1–12

    Article  CAS  Google Scholar 

  16. Borges VK, Schnäckel W, Kurze S (2009) Fleischzubereitungen auf Algenpräparatbasis. Fleischwirtschaft 11:105–109

    Google Scholar 

  17. ASU L 06.00-3 (2004) Bestimmung der Trockenmasse in Fleisch und Fleischerzeugnissen. Beuth-Verlag, Berlin

    Google Scholar 

  18. ASU L 07.00-5/1 (2010) Bestimmung des Kochsalzgehaltes in Fleischerzeugnissen: Potentiometrische Endpunktbestimmung. Beuth-Verlag, Berlin

    Google Scholar 

  19. ASU L 07.00-60 (2007) Bestimmung des Nitrat- und/oder Nitritgehaltes in Fleischerzeugnissen nach enzymatischer Reduktion von Nitrat zu Nitrit: Spektralphotometrisches Verfahren. Beuth-Verlag, Berlin

    Google Scholar 

  20. ISO (1999) Meat and meat products—measurement of pH—reference method (ISO 2917:1999-12). International Organization for Standardization, Geneva

  21. ISO (2003) Microbiology of food and animal feeding stuffs—preparation of test samples, initial suspension and decimal dilutions for microbiological examination—part 2: specific rules for the preparation of meat and meat products (ISO 6887-2:2004-01). International Organization for Standardization, Geneva

    Google Scholar 

  22. Deutsche Landwirtschafts-Gesellschaft e. V. (2014) Prüfbestimmungen, 7th edn. DLG-Verlag, Frankfurt am Main, Deutschland

    Google Scholar 

  23. Heller K (2010) Wichtige Mikroorganismengruppen. In: Weber H (ed) Mikrobiologie der Lebensmittel Grundlagen, 9th edn. Behr’s Verlag, Hamburg, pp 9–127

    Google Scholar 

  24. Honikel KO (2008) Physiklische Messmethoden zur Erfassung der Fleischqualität. In: Branscheid W, Honikel KO, von Lengerken G, Troeger K (eds) Qualität von Fleisch und Fleischwaren. Deutscher Fachverlag, Frankfurt am Main, pp 855–881

    Google Scholar 

  25. Ngapo TM, Wilkinson BHP, Chong R (1996) 1,5-Glucono-δ-lactone-induced gelation of myofibrillar protein at chilled temperatures. Meat Sci 42(1):3–13

    Article  CAS  Google Scholar 

  26. Cheng J-h, Ockerman HW (2003) Effect of phosphate with tumbling on lipid oxidation of precooked roast beef. Meat Sci 65(4):1353–1359

    Article  CAS  Google Scholar 

  27. Müller W-D (2007) Kochpökelware. In: Branscheid W, Honikel KO, von Lengerken G, Troeger K (eds) Qualität von Fleisch und Fleischwaren, 2nd edn. Deutscher Fachverlag, Frankfurt am Main, pp 1031–1055

    Google Scholar 

  28. Cammack R, Joannou CL, Cui XY, Torres Martinez C, Maraj SR, Hughes MN (1999) Nitrite and nitrosyl compounds in food preservation. Biochimica et Biophysica Acta - Bioenergetics 1411(2–3):475–488

    Article  CAS  Google Scholar 

  29. Marco A, Navarro JL, Flores M (2006) The influence of nitrite and nitrate on microbial, chemical and sensory parameters of slow dry fermented sausage. Meat Sci 73(4):660–673

    Article  CAS  Google Scholar 

  30. EFSA (2003) Opinion of the scientific panel on biological hazards on the request from the commission related to the effects of nitrites/nitrates on the microbiological safety of meat products. EFSA J 14:1–31

    Google Scholar 

  31. Honikel KO (2008) The use and control of nitrate and nitrite for the processing of meat products. Meat Sci 78(1–2):68–76

    Article  CAS  Google Scholar 

  32. Coutinho de Oliveira TL, Malfitano de Carvalho S, de Araújo Soares R, Andrade MA, Cardoso MdG, Ramos EM, Piccoli RH (2012) Antioxidant effects of Satureja montana L. essential oil on TBARS and color of mortadella-type sausages formulated with different levels of sodium nitrite. LWT - Food Sci Technol 45(2):204–212

    Article  CAS  Google Scholar 

  33. Rywotycki R (2002) The effect of selected functional additives and heat treatment on nitrosamine content in pasteurized pork ham. Meat Sci 60(4):335–339

    Article  CAS  Google Scholar 

  34. Sebranek JG, Bacus JN (2007) Cured meat products without direct addition of nitrate or nitrite: What are the issues? Meat Sci 77(1):136–147

    Article  CAS  Google Scholar 

  35. Hammes WP, Bantleon A, Min S (1990) Lactic acid bacteria in meat fermentation. FEMS Microbiol Lett 87(1–2):165–174

    Article  CAS  Google Scholar 

  36. Esmaeilzadeh P, Darvishi S, Assadi MM, Mirahmadi F (2012) Effect of Lactobacillus plantarum and Lactobacillus fermentum on nitrite concentration and bacterial load in fermented sausage during fermentation. World Appl Sci J 18(4):493–501

    CAS  Google Scholar 

  37. Oh CK, Oh MC, Kim SH (2004) The depletion of sodium nitrite by lactic acid bacteria isolated from kimchi. J Med Food 7(1):38–44

    Article  CAS  Google Scholar 

  38. Skibsted LH (2011) Nitric oxide and quality and safety of muscle based foods. Nitric Oxide 24(4):176–183

    Article  CAS  Google Scholar 

  39. Lautenschläger R (1995) Diffusionsverhalten der Salze und Wertung von Technologien beim Pökeln von rohen Fleisch-Erzeugnissen. Dissertation, Technische Universität Berlin

  40. Hamm R (1972) Kolloidchemie des Fleisches. Paul Parey, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Sadeghi-Mehr.

Ethics declarations

Conflict of interest

None.

Compliance with ethics requirements

The authors; Arash Sadeghi-Mehr, Ralf Lautenschlaeger and Stephan Drusch confirm that this manuscript is carried out according to the COPE guidelines and has not yet been published nor is it under consideration for publication elsewhere. This work does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi-Mehr, A., Lautenschlaeger, R. & Drusch, S. Sensory, physicochemical and microbiological properties of dry-cured formed ham: comparison of four different binding systems. Eur Food Res Technol 242, 1379–1391 (2016). https://doi.org/10.1007/s00217-016-2641-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-016-2641-0

Keywords

Navigation