Skip to main content
Log in

Effect of thermomaceration and enzymatic maceration on phenolic compounds of grape must enriched by grape pomace, vine leaves and canes

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Grape pomace, leaves and canes generated by the wine industry are excellent and valuable resources to recover polyphenolic compounds with strong antioxidant capacity. Hence, the main objective of this work was to study the extraction process and the quality of grape juices enriched in the phenolic compounds extracted from grape skins, seeds and flesh, autumn leaves and canes of the Vitis vinifera species, cvs. País and Lachryma Christi. Thermomaceration of a mixture of grape must and pomace (8:1 w/w) at 60 °C resulted in a higher extraction degree of polyphenols, compared to maceration with pectolytic enzymes commonly used in enology. However, extraction modified pH and acidity of grape musts affecting anthocyanin contents of the samples. Generally, musts enriched by vine leaves and grape pomace of the Lachryma Christi cultivar showed the highest antioxidant properties, where must mashed on skins with seeds resulted into maximum total polyphenol contents of 2855 mg/L of gallic acid equivalents and must in contact with leaves yielded maximum antioxidant capacity of 93.5 mmol/L of Trolox equivalents. The juices using grape pomace were rich in anthocyanins (malvidin-3-glucoside) and flavan-3-ols (catechin and epicatechin); flavonols (quercetin-3-glucoside) and phenolic acids (caftaric and coutaric acid) were the main compounds in leaf extracts. Thermomaceration using grape pomace and vine leaves is preferred in order to achieve a grape must with a high amount of polyphenolics and antioxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Agati G, Azzarello E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196:67–76

    Article  CAS  Google Scholar 

  2. Ferrer-Gallego R, Hernández-Hierro J, Rivas-Gonzalo J, Escribano-Bailón M (2012) Influence of climatic conditions on the phenolic composition of Vitis vinifera L. cv. Graciano. Anal Chim Acta 732:73–77

    Article  CAS  Google Scholar 

  3. Obreque-Slier E, Peña-Neira A, López-Solís R, Cáceres-Mella A, Toledo-Araya H, López-Rivera A (2013) Phenolic composition of skins from four Carmenere grape varieties (Vitis vinifera L.) during ripening. LWT–Food. Sci Technol 54:404–413

    CAS  Google Scholar 

  4. Castillo-Muñoz N, Fernández-González M, Gómez-Alonso S, García-Romero E, Hermosín-Gutiérrez I (2009) Red-color related phenolic composition of Garnacha Tintorera (Vitis vinifera L.) grapes and red wines. J Agric Food Chem 57:7883–7891

    Article  Google Scholar 

  5. Figueiredo-González M, Cancho-Grande B, Simal-Gándara J (2013) Garnacha Tintorera-based sweet wines: Chromatic properties and global phenolic composition by means of UV–Vis spectrophotometry. Food Chem 140:217–224

    Article  Google Scholar 

  6. Río S, Pace C, Torchio F, Giacosa S, Gerbi V, Rolle L (2015) Impact of maceration enzymes on skin softening and relationship with anthocyanin extraction in wine grapes with different anthocyanin profiles. Food Res Int 71:50–57

    Article  Google Scholar 

  7. Katalinić V, Generalić I, Skroza D, Ljubenkov I, Teskera A, Konta I, Boban M (2009) Insight in the phenolic composition and antioxidative properties of Vitis vinifera leaves extracts. Croatian J Food Sci Technol 1:7–15

    Google Scholar 

  8. Fernandes F, Ramalhosa E, Pires P, Verdial J, Valentão P, Andrade P, Bento A, Pereira JA (2013) Vitis vinifera leaves towards bioactivity. Ind Crop Prod 43:434–440

    Article  CAS  Google Scholar 

  9. Orhan N, Aslan M, Orhan DD, Ergun F, Yesilada E (2006) In vivo assessment of antidiabetic and antioxidant activities of grapeleaves (Vitis vinifera) in diabetic rats. J Ethnopharmacol 108:280–286

    Article  CAS  Google Scholar 

  10. Dani C, Oliboni LS, Agostini F, Funchal C, Serafini L, Henriques JA, Salvador M (2010) Phenol content of grapevine leaves (Vitis labrusca var. Bordo) and its neuroprotective effect against peroxide damage. Toxicol Vitro 24:148–153

    Article  CAS  Google Scholar 

  11. Rabe E, Stücker M, Esperester A, Schäfer E, Ottillinger B (2011) Efficacy and tolerability of a red-vine-leaf extract in patients suffering from chronic venous insufficiency results of a double-blind placebo-controlled study. Eur J Vasc Endovasc Surg 41:540–547

    Article  CAS  Google Scholar 

  12. Karvela E, Makris DP, Kalogeropoulos N, Karathanos V (2009) Deployment of response surface methodology to optimise recovery of grape (Vitis vinifera) stem polyphenols. Talanta 79:1311–1321

    Article  CAS  Google Scholar 

  13. Apostolou A, Stagos D, Galitsiou E, Spyrou A, Haroutounian S, Portesis N, Trizoglou I, Wallace Hayes A, Tsatsakis AM, Kouretas D (2013) Assessment of polyphenolic content, antioxidant activity, protection against ROS-induced DNA damage and anticancer activity of Vitis vinifera stem extracts. Food Chem Toxicol 61:60–68

    Article  CAS  Google Scholar 

  14. Bordeu E, Scarpa J (2000) Análisis químico del vino. Ediciones Universidad Católica de Chile, Santiago

    Google Scholar 

  15. Singleton V, Orthofer R, Lamuela-Raventós R (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Method Enzymol 299:152–178

    Article  CAS  Google Scholar 

  16. Lee J, Durst R, Wrolstad R (2005) Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. J AOAC Int 88:1269–1278

    CAS  Google Scholar 

  17. Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559

    Article  CAS  Google Scholar 

  18. Rebolo-López S (2007) Estudio de la composición polifenólica de vinos tintos gallegos con D.O.: Ribeiro, Valdeorras y Ribeira Sacra. Universidad de Santiago de Compostela, Lugo

  19. Castillo-Muñoz N, Gómez-Alonso S, García-Romero E, Hermosín-Gutiérrez I (2007) Flavonol profiles of Vitis vinifera red grapes and their single-cultivar wines. J Agric Food Chem 55:992–1002

    Article  Google Scholar 

  20. OIV (2007) HPLC-Determination of nine major anthocyanins in red and rosé wine (Resolution Oeno 22/2003 modified by Oeno 12/2007). Compendium of international methods of analysis-OIV anthocyanins, OIV-MA-AS315-11, pp 1–13

  21. Ruiz A, Mardones C, Vergara C, Hermosín-Gutiérrez I, von Baer D, Hinrichsen P, Rodríguez R, Arribillaga D, Dominguez E (2013) Analysis of hydroxycinnamic acids derivatives in calafate (Berberis microphylla G. Forst) berries by liquid chromatography with photodiode array and mass spectrometry detection. J Chromatogr A 1281:38–45

    Article  CAS  Google Scholar 

  22. Gorena T, Saez V, Mardones C, Vergara C, Winterhalter P, von Baer D (2014) Influence of post-pruning storage on stilbenoid levels in Vitis vinifera L. canes. Food Chem 155:256–263

    Article  CAS  Google Scholar 

  23. Mullen W, Marks SC, Crozier A (2007) Evaluation of phenolic compounds in commercial fruit juices and fruit drinks. J Agric Food Chem 55:3148–3157

    Article  CAS  Google Scholar 

  24. Borges G, Mullen W, Crozier A (2010) Comparison of the polyphenolic composition and antioxidant activity of European commercial fruit juices. Food Funct 1:73–83

    Article  CAS  Google Scholar 

  25. Lutz M, Cajas Y, Henríquez C (2012) Phenolics contents and antioxidant capacity of Chilean grapes cv. País and Cabernet Sauvignon. CyTA J Food 10:251–257

    Article  CAS  Google Scholar 

  26. Chamorro S, Goñi I, Viveros A, Hervert-Hernández D, Brenes A (2012) Changes in polyphenolic content and antioxidant activity after thermal treatments of grape seed extract and grape pomace. Eur Food Res Technol 234:147–155

    Article  CAS  Google Scholar 

  27. Sólyom K, Solá R, Cocero MJ, Mato RB (2014) Thermal degradation of grape marc polyphenols. Food Chem 159:361–366

    Article  Google Scholar 

  28. Martino KG, Paul MS, Pegg RB, Kerr WL (2013) Effect of time–temperature conditions and clarification on the total phenolics and antioxidant constituents of muscadine grape juice. LWT Food Sci Technol 53:327–330

    Article  CAS  Google Scholar 

  29. Romero-Cascales I, Fernández-Fernández JI, Ros-García JM, López-Roca JM, Gómez-Plaza E (2008) Characterisation of the main enzymatic activities present in six commercial macerating enzymes and their effects on extracting color during winemaking of Monastrell grapes. Int J Food Sci Technol 43:1295–1305

    Article  CAS  Google Scholar 

  30. Ribéreau-Gayon P, Glories Y, Maujean A, Dubourdieu D (2006) Handbook of enology, Vol 2. The chemistry of wine stabilization and treatments, 2nd edn. Wiley, London

    Book  Google Scholar 

  31. Gil G, Pszczolkowski P (2007) VitiCultura. Fundamentos para optimizar producción y calidad. Ediciones Universidad Católica de Chile, Santiago

    Google Scholar 

  32. Bermúdez-Soto MJ, Tomás-Barberán FA (2004) Evaluation of commercial red fruit juice concentrates as ingredients for antioxidant functional juices. Eur Food Res Technol 219:133–141

    Article  Google Scholar 

  33. Sacchi KL, Bisson LF, Adams DO (2005) A review of the effect of winemaking techniques on phenolic extraction in red wines. Am J Enol Vitic 56:197–206

    CAS  Google Scholar 

  34. Brouillard R, Wigand M, Dangles O, Cheminat A (1991) PH and solvent effects on the copigmentation reaction of malvin with polyphenols, purine and pyrimidine derivatives. J Chem Soc Perkin Trans 2:1235–1241

    Article  Google Scholar 

  35. Lapidot T, Harel S, Akiri B, Granit R, Kanner J (1999) PH-dependent forms of red wine anthocyanins as antioxidants. J Agric Food Chem 47:67–70

    Article  CAS  Google Scholar 

  36. Monagas M, Bartolomé B, Gómez-Cordovés C (2005) Updated knowledge about the presence of phenolic compounds in wine. Crit Rev Food Sci Nutr 45:85–118

    Article  CAS  Google Scholar 

  37. Hillmann M, Burin V, Bordignon-Luiz M (2011) Thermal degradation kinetics of anthocyanins in grape juice and concentrate. Int J Food Sci Technol 46:1997–2000

    Article  CAS  Google Scholar 

  38. Sui X, Dong X, Zhou W (2014) Combined effect of pH and high temperature on the stability and antioxidant capacity of two anthocyanins in aqueous solution. Food Chem 163:163–170

    Article  CAS  Google Scholar 

  39. Castillo-Muñoz N, Gómez-Alonso S, García-Romero E, Gómez MV, Velders AH, Hermosín-Gutiérrez I (2009) Flavonol 3-O-glycosides series of Vitis vinifera cv. Petit Verdot red wine grapes. J Agric Food Chem 57:209–219

    Article  Google Scholar 

  40. Morel-Salmi C, Souquet J, Bes M, Cheynier V (2006) Effect of flash release treatment on phenolic extraction and wine composition. J Agric Food Chem 54:4270–4276

    Article  CAS  Google Scholar 

  41. Castillo-Muñoz N, Gómez-Alonso S, García-Romero E, Hermosín-Gutiérrez I (2010) Flavonol profiles of Vitis vinifera white grape cultivars. J Food Compos Anal 23:699–705

    Article  Google Scholar 

  42. Monagas M, Hernández-Ledesma B, Gómez-Cordovés C, Bartolomé B (2006) Commercial dietary ingredients from Vitis vinífera L. leaves and grape skins: antioxidant and chemical characterization. J Agric Food Chem 54:319–327

    Article  CAS  Google Scholar 

  43. Lima M, Silani I, Toaldo I, Corrêa L, Telles Biasoto A, Pereira G, Bordignon-Luiz MT, Ninow JL (2014) Phenolic compounds, organic acids and antioxidant activity of grape juices produced from new Brazilian varieties planted in the Northeast Region of Brazil. Food Chem 161:94–103

    Article  CAS  Google Scholar 

  44. Moreno-Montoro M, Olalla-Herrera M, Gimenez-Martinez R, Navarro-Alarcon M, Rufián-Henares J (2015) Phenolic compounds and antioxidant activity of spanish commercial grape juices. J Food Compos Anal 38:19–26

    Article  CAS  Google Scholar 

  45. Fernández K, Labra J (2013) Simulated digestion of proanthocyanidins in grape skin and seed extracts and the effects of digestion on the angiotensin I-converting enzyme (ACE) inhibitory activity. Food Chem 139:196–202

    Article  Google Scholar 

  46. Amalfitano C, Agrelli D, Arrigo A, Mugnai L, Surico G, Evidente A (2011) Stilbene polyphenols in the brown red wood of Vitis vinifera cv. Sangiovese affected by “esca proper”. Phytopathol Mediterr 50:S224–S235

    Google Scholar 

  47. Vergara C, von Baer D, Mardones C, Wilkens A, Wernekinck K, Damm A (2011) Stilbene levels in grape cane of different cultivars in southern Chile: determination by HPLC–DAD–MS/MS method. J Agric Food Chem 60:929–933

    Article  Google Scholar 

  48. Likhtenshtein G (2010) Stilbenes. Applications in chemistry, life sciences and material science. Wiley, Weinheim

    Google Scholar 

  49. Ali K, Maltese F, Hae Choi Y, Verpoorte R (2010) Metabolic constituents of grapevine and grape-derived products. Phytochem Rev 9:357–378

    Article  CAS  Google Scholar 

  50. Gómez-Gallego MA, Gómez García-Carpintero E, Sánchez-Palomo E, Hermosín-Gutiérrez I, González-Viñas MA (2012) Study of phenolic composition and sensory properties of red grape varieties in danger of extinction from the Spanish region of Castillo–La Mancha. Eur Food Res Technol 234:295–303

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Viña Zamora for providing grape samples, and the National Commission for Scientific and Technological Research (FONDEF VIU 120010) and the Chilean Ministry of Education (CD UCO 1201) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes de Bruijn.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilar, T., Loyola, C., de Bruijn, J. et al. Effect of thermomaceration and enzymatic maceration on phenolic compounds of grape must enriched by grape pomace, vine leaves and canes. Eur Food Res Technol 242, 1149–1158 (2016). https://doi.org/10.1007/s00217-015-2619-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-015-2619-3

Keywords

Navigation