Skip to main content
Log in

Inventory of lactic acid bacteria populations in red wine varieties from Appellation of Origin Méntrida

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

A study of bacterial populations present during spontaneous malolactic fermentation of wines of different grape varieties (Tempranillo, Merlot, Syrah, Cabernet Sauvignon and Garnacha) at six wineries of the Appellation of Origin Méntrida has been carried out using culture-dependent and culture-independent methods. A total of 1,082 isolates were genetically characterised by randomly amplified polymorphic DNA-PCR displaying 147 genotypes, 97 of which were clusters including two or more isolates (major clusters). Identification of representative isolates from each, using 16S-ARDRA, species-specific PCR or 16S gene sequencing showed presence of Oenococcus oeni (76.71 % of the isolates), Enterococcus faecium (11.92 %) and Pediococcus parvulus (10.44 %) as predominant species. The presence of coincident genotypes of these species, especially of O. oeni, at different wineries suggests their adaptation to the conditions of elaboration used in the wineries and to the characteristics of the wines from this Appellation of Origin. Combination of these results with those obtained using an independent-culture method, such as the polymerase chain reaction–denaturing gradient gel electrophoresis (PCR–DGGE), confirmed the predominance of O. oeni that was the only species detected from both methods. Acetobacter sp. and Enterobacteriaceae family were also detected by PCR–DGGE, being the diversity of species lower when this method was used. This research has provided detailed information about the composition of the bacterial community present in wine of different grape varieties, showing for the first time the presence of the species E. faecium, P. parvulus, Lactobacillus brevis, Lactobacillus acidophilus and Acetobacter sp. in wines of this region, some of them considered as potential spoilage bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Davis CR, Wibowo D, Fleet GH, Leem TH (1988) Properties of wine lactic acid bacteria: their potential enological significance. Am J Enol Vitic 39:137–142

    CAS  Google Scholar 

  2. Kunkee RE (1991) Some roles of malic acid in the malolactic fermentation in wine making. FEMS Microbiol Rev 88:55–72

    CAS  Google Scholar 

  3. Maicas S, Gil JV, Pardo I, Ferrer S (1999) Improvement of volatile composition of wines by controlled addition of malolactic bacteria. Food Res Intern 32:491–496

    Article  CAS  Google Scholar 

  4. Ugliano M, Genovese A, Moio L (2003) Hydrolysis of wine aroma precursors during malolactic fermentation with four commercial starter cultures of Oenococcus oeni. J Agric Food Chem 51:5073–5078

    Article  CAS  Google Scholar 

  5. Van Vuuren HJJ, Dicks LMT (1993) Leuconostoc oenos: a review. Am J Enol Vitic 44:99–112

    Google Scholar 

  6. Lonvaud-Funel A (1999) Lactic acid bacteria in the quality improvement and depreciation of wine. Antonie Leeuwenhoek 76:317–331

    Article  CAS  Google Scholar 

  7. Capozzi V, Ladero V, Beneduce L, Fernández M, Álvarez MA, Benoit B, Laurent B, Grieco F, Spano G (2011) Isolation and characterization of tyramine-producing Enterococcus faecium strains from red wine. Food Microbiol 28:434–439

    Article  CAS  Google Scholar 

  8. Nisiotou AA, Rantsiou K, Iliopoulos V, Cocolin L, Nychas GJE (2011) Bacterial species associated with sound and Botrytis-infected grapes from a Greek vineyard. Int J Food Microbiol 145:432–436

    Article  Google Scholar 

  9. Renouf V, Gindreau E, Claisse O, Lonvaud-Funel A (2005) Microbial changes during malolactic fermentation in red wine elaboration. J Int Sci Vigne Vin 39:179–190

    CAS  Google Scholar 

  10. Ruiz P, Seseña S, Izquierdo PM, Palop MLl (2010) Bacterial biodiversity and dynamics during malolactic fermentation of Tempranillo wines as determined by a culture-independent method (PCR–DGGE). Appl Microbiol Biotechnol 86:1555–1562

    Article  CAS  Google Scholar 

  11. Guerrini S, Bastianini A, Blaiotta G, Granchi L, Moschetti G, Coppola S, Romano P, Vincenzini M (2003) Phenotypic and genotypic characterization of Oenococcus oeni strains isolated from typical Italian wines. Int J Food Microbiol 83:1–14

    Article  CAS  Google Scholar 

  12. Andorrá I, Landi S, Mas A, Guillamón JM, Esteve-Zarzoso B (2008) Effect of oenological practices on microbial populations using culture-independent techniques. Food Microbiol 25:849–856

    Article  Google Scholar 

  13. Reguant C, Carreté R, Constantí M, Bordons A (2005) Population dynamics of Oenococcus oeni strains in a new winery and the effect of SO2 and yeast strain. FEMS Microbiol Lett 246:111–117

    Article  CAS  Google Scholar 

  14. Ercolini D (2004) PCR–DGGE fingerprinting: novel strategies for detection of microbes in food. J Microbiol Methods 56:297–314

    Article  CAS  Google Scholar 

  15. Cocolin L, Alessandria V, Dolci P, Gorra R, Rantsiou K (2013) Culture independent methods to assess the diversity and dynamics of microbiota during food fermentation. Int J Food Microbiol 167:29–43

    Article  CAS  Google Scholar 

  16. Hong SW, Choi JY, Chung KS (2012) Culture-based and denaturing gradient gel electrophoresis analysis of the bacterial community from Chungkookjang, a traditional korean fermented soybean food. J Food Sci 77:572–578

    Article  Google Scholar 

  17. Pérez Pulido R, Ben Omar N, Abriouel H, Lucas R, Martínez M, Gálvez A (2005) Microbiological study of lactic acid fermentation of caper berries by molecular and culture-dependent methods. Appl Environ Microbiol 71:7872–7879

    Article  Google Scholar 

  18. Prakitchaiwattana CJ, Fleet GH, Heard GM (2004) Application and evaluation of denaturing gradient gel electrophoresis to analyse the yeast ecology of wine grapes. FEMS Yeast Res 4:865–877

    Article  CAS  Google Scholar 

  19. Renouf V, Claisse O, Lonvaud-Funel A (2007) Inventory and monitoring of wine microbial consortia. Appl Microbiol Biotechnol 75:149–164

    Article  CAS  Google Scholar 

  20. Izquierdo PM, Ruiz P, Seseña S, Palop MLl (2009) Ecological study of lactic acid microbiota isolated from Tempranillo wines of Castilla-La Mancha. J Biosci Bioeng 108:220–224

    Article  Google Scholar 

  21. Ruiz P, Izquierdo PM, Seseña S, Palop MLl (2010) Analysis of lactic acid bacteria populations during spontaneous malolactic fermentation of Tempranillo wines at five wineries during two consecutive vintages. Food Control 21:70–75

    Article  CAS  Google Scholar 

  22. García-Rodríguez G, Hernández-Moreno D, Soler F, Pérez-López M (2011) Characterization of “Ribera del Guadiana” and “Méntrida” Spanish red wines by chemometric techniques based on their mineral contents. J Food Nutr Res 50:41–49

    Google Scholar 

  23. Rodas AM, Ferrer S, Pardo I (2003) 16S-ARDRA, a tool for identification of lactic acid bacteria isolated from grape must and wine. Syst Appl Microbiol 26:412–422

    Article  CAS  Google Scholar 

  24. Ruiz P, Izquierdo PM, Seseña S, Palop MLl (2008) Intraspecific genetic diversity of lactic acid bacteria from malolactic fermentation of Cencibel wines as derived from combined analysis of RAPD-PCR and PFGE patterns. Food Microbiol 25:942–948

    Article  CAS  Google Scholar 

  25. Holt JH, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams & Wilkins, Baltimore

    Google Scholar 

  26. Bensalah F, Flores MJ, Mouats A (2006) A rapid PCR based method to distinguish between Enterococcus species by using degenerate and species-specific sodA gene primers. Afr J Biotechnol 5:697–702

    CAS  Google Scholar 

  27. Pfannebecker J, Fröhlich J (2008) Use of a species-specific multiplex PCR for the identification of pediococci. Int J Food Microbiol 128:288–296

    Article  CAS  Google Scholar 

  28. Ogier JC, Son O, Gruss A, Tailliez P, Delacroix-Buchet A (2002) Identification of the bacterial microflora in dairy products by temporal temperature gradient gel electrophoresis. Appl Environ Microbiol 68:3691–3701

    Article  CAS  Google Scholar 

  29. Davis CR, Wibowo D, Lee TH, Fleet GH (1985) Growth and metabolism of lactic acid bacteria during fermentation and conservation of some Australian wines. Food Technol Aust 38:35–40

    Google Scholar 

  30. Edwards CG (1992) Lactic acid bacteria native to Washington State wines. Research Bulletin XB1026. Washington State University, Pullman, WA

  31. Petri A, Pfannebecker J, Fröhlich J, König H (2013) Fast identification of wine related lactic acid bacteria by multiplex PCR. Food Microbiol 33:48–54

    Article  CAS  Google Scholar 

  32. Pramateftaki PV, Metafa M, Karapetrou G, Marmaras G (2012) Assessment of the genetic polymorphism and biogenic amine production of indigenous Oenococcus oeni strains isolated from Greek red wines. Food Microbiol 29:113–120

    Article  CAS  Google Scholar 

  33. Seseña S, Palop MLl (2007) An ecological study of lactic acid bacteria from Almagro eggplant fermentation brines. J Appl Microbiol 103:1553–1561

    Article  Google Scholar 

  34. Abriouel H, Martín-Platero A, Maqueda M, Valdivia E, Martínez-Bueno M (2008) Biodiversity of the microbial community in a Spanish farmhouse cheese as revealed by culture-dependent and culture-independent methods. Int J Food Microbiol 127:200–208

    Article  CAS  Google Scholar 

  35. Escalante A, Giles-Gómez M, Hernández G, Córdova-Aguilar MS, López-Munguía A, Gosset G, Bolivar F (2008) Analysis of bacterial community during the fermentation of pulque, a traditional Mexican alcoholic beverage, using a polyphasic approach. Int J Food Microbiol 124:126–134

    Article  CAS  Google Scholar 

  36. Bauer R, Dicks LMT (2004) Control of malolactic fermentation in wine. A review. S Afr J Enol Vitic 25:74–88

    CAS  Google Scholar 

  37. Du Plessis HW, Dicks LMT, Pretorius IS, Lambrechts MG, du Toit M (2004) Identification of lactic acid bacteria isolated from South African brandy base wines. Int J Food Microbiol 91:19–29

    Article  Google Scholar 

  38. Ribéreau-Gayon P, Glories Y, Maujean A, Dubourdieu D (2000) The chemistry of wine stabilization and treatments. In: Ribéreau-Gayon P (ed) Handbook of enology. Wiley, Chichester, pp 140

  39. Coton M, Romano A, Spano G, Ziegler K, Vetrana C, Desamarais C, Lonvaud-Funel A, Lucas P, Coton E (2010) Occurrence of biogenic amine-forming lactic acid bacteria in wine and cider. Food Microbiol 27:1078–1085

    Article  CAS  Google Scholar 

  40. Cerning J (1990) Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol Rev 87:113–130

    Article  CAS  Google Scholar 

  41. Walling E, Gindreau E, Lonvaud-Funel A (2005) A putative glucan synthase gene dps detected in exopolysaccharide producing by Pediococcus damnosus and Oenococcus oeni strains isolated from wine and cider. Int J Food Microbiol 48:53–62

    Article  Google Scholar 

  42. Franz CMAP, Stiles ME, Schleifer KH, Holzapfel WH (2003) Enterococci in foods—a conundrum for food safety. Int J Food Microbiol 88:105–122

    Article  CAS  Google Scholar 

  43. Pérez-Martín F, Seseña S, Izquierdo PM, Palop MLl (2014) Are Enterococcus populations present during malolactic fermentation of red wine safe? Food Microbiol 42:95–101

    Article  Google Scholar 

  44. Sabaté J, Cano J, Querol A, Guillamón JM (1998) Diversity of Saccharomyces strains in wine fermentations: analysis for two consecutive years. Lett Appl Microbiol 26:452–455

    Article  Google Scholar 

  45. Renouf V, Claisse O, Miot-Sertier C, Lonvaud-Funel A (2006) Lactic acid bacteria evolution during winemaking: use of rpoB gene as a target for PCR–DGGE analysis. Food Microbiol 23:136–145

    Article  CAS  Google Scholar 

  46. González-Arenzana L, López R, Santamaría P, López-Alfaro I (2013) Dynamics of lactic acid bacteria populations in Rioja wines by PCR–DGGE, comparison with culture-dependent methods. Appl Microbiol Biotechnol 97:6931–6941

    Article  Google Scholar 

  47. Joyeux A, Lafon-Lafourcade S, Ribéreau-Gayon P (1984) Evolution of acetic acid bacteria during fermentation and storage of wine. Appl Environ Microbiol 48:153–156

    CAS  Google Scholar 

  48. Drysdale GS, Fleet GH (1985) Acetic acid bacteria in some Australian wines. Food Technol Aust 37:17–20

    CAS  Google Scholar 

  49. De Ley J, Gillis M, Swings J (1984) Family IV. Acetobacteraceae Bergey’s manual of systematic bacteriology, vol 1, 9th edn. Williams & Wilkins, MD, pp 267–274

    Google Scholar 

  50. Du Toit WJ, Lambrecht MG (2002) The enumeration and identification of acetic acid bacteria from South-African red wine fermentation. Int J Food Microbiol 74:57–64

    Article  Google Scholar 

  51. Du Toit WJ, Pretorius IS, Lonvaud-Funel A (2005) The effect of sulfur dioxide and oxygen on the viability and culturability of a strain Acetobacter pasteurianus and a strain of Brettanomyces bruxellensis isolated from wine. J Appl Microbiol 98:862–871

    Article  Google Scholar 

  52. Meroth CB, Walter J, Hertel C, Brandt MJ, Hammes WP (2003) Monitoring the bacterial population dynamics in sourdough fermentation processes by using PCR–denaturing gradient gel electrophoresis. Appl Environ Microbiol 69:475–482

    Article  CAS  Google Scholar 

  53. Cocolin L, Campolongo S, Alessandria V, Dolci P, Rantsiou K (2011) Culture independent analyses and wine fermentation: an overview of achievements 10 years after first application. Ann Microbiol 61:17–23

    Article  Google Scholar 

  54. Valdés A, Ibáñez C, Simó C, García-Cañas V (2013) Recent transcriptomics advances and emerging applications in food science. Trends Anal Chem 52:142–154

    Article  Google Scholar 

  55. Solieri L, Dakal TC, Giudici P (2013) Next-generation sequencing and its potential impact on food microbial genomics. Ann Microbiol 63:21–37

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Consejería de Educación y Ciencia of the Council of Communities of Castilla-La Mancha (JCCM) for the project POII09-0159-1914. F. Pérez-Martín is supported by a Grant of the Council of Communities of Castilla-La Mancha cofounding by European Social Fund.

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Seseña.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1097 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Martín, F., Seseña, S. & Palop, M.L. Inventory of lactic acid bacteria populations in red wine varieties from Appellation of Origin Méntrida. Eur Food Res Technol 240, 725–733 (2015). https://doi.org/10.1007/s00217-014-2377-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-014-2377-7

Keywords

Navigation