Skip to main content
Log in

Effects of culture conditions on γ-aminobutyric acid accumulation during germination of foxtail millet (Setaria italica L.)

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Effects of two buffer solutions—citrate solution and acetate solution—on γ-aminobutyric acid (GABA) accumulation during germination of foxtail millet (Setaria italica L.) and optimization of culture conditions, namely culture temperature, air flow rate and pH values, on GABA yield in germinated foxtail millet were investigated in this paper. The optimization processes were conducted using response surface methodology. The results showed that citrate buffer at 10 mmol L−1 was most effective as culture medium. Box–Behnken experimental design showed that the optimal conditions for GABA accumulation during millet germination were at a temperature of 33 °C; an air flow rate of 1.9 L/min; and a pH value of 5.8. Under these conditions, the maximal observed production of GABA (26.96 mg 100 g−1FW) was obtained. Analysis of variance for quadratic polynomial regression model indicated that the model was extremely significant (P < 0.0001), the determination coefficient (R 2) was 0.9594, which implied that the model can forecast the changes of GABA accumulation during millet germination excellently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fujita S, Sugimoto Y, Yamashita Y, Fuwa H (1996) Food Chem 55:209–213

    Article  CAS  Google Scholar 

  2. Mbithi-Mwikya S, Van Camp J, Yiru Y, Huyghebaert A (2000) LWT 33:9–11

    Article  CAS  Google Scholar 

  3. Gu SL, Li L (1986) J Foxtail millet 1:28–34

    Google Scholar 

  4. Usha A, Sripriya G, Chandra TS (1996) Food Chem 56:381–384

    Article  Google Scholar 

  5. Sripriya G, Antony U, Chandra TS (1997) Food Chem 58:3455–3501

    Article  Google Scholar 

  6. Li D (1986) J Foxtail millet 1:1–4

    Google Scholar 

  7. Chavan JK, Kadam SS (1989) Crit Rev Food Sci 28:401–437

    Article  CAS  Google Scholar 

  8. Sangronis E, Machado CJ (2007) LWT 40:116–120

    Article  CAS  Google Scholar 

  9. Kumar H, Chauhan BM (1993) Cereal Chem 70:504–506

    CAS  Google Scholar 

  10. Wanasundara PKJPD, Shahidi F, Brosnan ME (1999) Food Chem 65:289–295

    Article  CAS  Google Scholar 

  11. Li J, Chen Z, Yao H, Xu Y (2007) LWT 40:1630–1636

    Article  CAS  Google Scholar 

  12. Komatsuzaki N, Tsukahara K, Toyoshima H, Suzuki T, Shimizu N, Kimura T (2007) J Food Eng 78:556–560

    Article  CAS  Google Scholar 

  13. Manyam BV, Katz L, Hare TA, Kanifefski K, Tremblay RD (1981) Ann Neurol 10:35–37

    Article  CAS  Google Scholar 

  14. Mody I, Dekoninck Y, Otis TS, Soltesz I (1994) Trends Neurosci 17:517–525

    Article  CAS  Google Scholar 

  15. Rhodes D, Handa S, Bressan RA (1986) Plant Physiol 82:890–903

    CAS  Google Scholar 

  16. Fougère F, Rudulier LD, Streeter JG (1991) Plant Physiol 96:1228–1236

    Google Scholar 

  17. Satyanarayan V, Nair PM (1990) Phytochemistry 29:367–375

    Article  Google Scholar 

  18. Kinnersley AM (2000) Crit Rev Plant Sci 19:479–509

    Article  CAS  Google Scholar 

  19. Brown AW, Shelp BJ (1989) Life Sci Adv Biochem 8:21–25

    Google Scholar 

  20. Reggiani R, Cautu CA, Brambilla I, Bertani A (1988) Plant Cell Physiol 29:981–987

    CAS  Google Scholar 

  21. Streeter JG, Thompson JF (1972) Plant Physiol 49:572–578

    CAS  Google Scholar 

  22. Aurisano N, Bertani A, Reggiani R (1994) Phytochemistry 38:1147–1150

    Article  Google Scholar 

  23. Shelp BJ, Bown AW, Mclean MD (1999) Trends Plant Sci 4:446–452

    Article  Google Scholar 

  24. Snedden WA, Arazi T, Fromm H, Shelp BJ (1995) Plant Physiol 108:543–549

    CAS  Google Scholar 

  25. Brandon SJ, Singh NK, Cherry JH, Locy RD (1997) Phytochemistry 46:39–44

    Article  Google Scholar 

  26. Badau MH, Nkama I, Jideani IA (2005) Food Chem 92:425–435

    Article  CAS  Google Scholar 

  27. Robert HG, Dorothy J, VanderJagt Cassius L (1997) J Food Compost Anal 10:205–217

    Article  Google Scholar 

  28. Rossetti V, Lombard A (1996) J Chromatogr B 681:63–67

    Article  CAS  Google Scholar 

  29. Carroll AD, Fox GG, Laurie S (1994) Plant Physiol 106:513–520

    CAS  Google Scholar 

  30. Sadami O, Satoshi A, Kazuhito S, Isao M (2000) Food Sci Technol Res 6:208–211

    Article  Google Scholar 

  31. Crawford LA (1994) Plant Physiol 104:865–871

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenxin Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, Q., Fan, G., Gu, Z. et al. Effects of culture conditions on γ-aminobutyric acid accumulation during germination of foxtail millet (Setaria italica L.). Eur Food Res Technol 228, 169–175 (2008). https://doi.org/10.1007/s00217-008-0920-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-008-0920-0

Keywords

Navigation