Skip to main content
Log in

Effect of technological processes and storage on flavonoids content and total, cumulative fast-kinetics and cumulative slow-kinetics antiradical activities of citrus juices

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Juices from the mandarin Clemenules (Citrus clementina Hort. ex Tan.), the tangor Ortanique (Citrus reticulata Blanco × Citrus sinensis Osb.) and the sweet orange Valencia Late (Citrus sinensis) have been industrially squeezed, pasteurized, concentrated and stored under refrigeration (4 °C) and at room temperature (20 °C). After each process, the flavanone-7-O-glycosides (FGs) and fully methoxylated flavones (FMFs) contents as well as total, cumulative fast-kinetics and cumulative slow-kinetics antiradical activities were determined and compared with those from the corresponding fresh hand-squeezed juices. Neither industrial-squeezing, nor pasteurization or concentration significantly affected FGs and FMFs contents and antiradical activities of assayed juices. Storage caused a slight decrease of the FMFs contents but a significant reduction of both soluble hesperidin contents and cumulative fast-kinetics antiradical activities in all assayed juices. These decreases were dependent on storage temperature. Characteristic values of the varietal characterization parameters, which are derived from the FMFs contents and antiradical activities of fresh hand-squeezed juices, held valid for industrially squeezed, pasteurized and concentrated juices. After storage, however, only the FMFs-derived varietal characterization parameters and cumulative slow-kinetics antiradical activity remained valid for the resulting juices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

Ascorbic acid

ABTS•+ :

2,2-Azinobis-(3-ethylbenzothiazoline)-6-sulphonate

CMN:

Clemenules cultivar

DID:

Didymin

DPPH :

2,2-Diphenyl-1-picrylhydrazyl

FAA:

Fast-kinetics antiradical activity (mmol l−1, molar equivalents of AA)

FG:

Flavanone-7-O-glycoside

FMF:

Fully methoxylated flavone

GOS:

Hexamethyl-O-gossypetin

HEP:

Heptamethoxyflavone

HES:

Hesperidin

IS1 :

Internal standard for FGs (o-coumaric acid)

IS2 :

Internal standard for FMFs (flavone)

k 1 :

Average rate constant of cumulative FAA (l mol−1 min−1)

k 2 :

Average rate constant of cumulative SAA (l mol−1 min−1)

LDL:

Low-density lipoprotein

NAR:

Narirutin

NOB:

Nobiletin

ORT:

Ortanique cultivar

QUE:

Hexamethyl-O-quercetagetin

SAA:

Slow-kinetics antiradical activity (mmol l−1, molar equivalents of AA)

SCU:

Tetramethyl-O-scutellarein

TAA:

Total antiradical activity of juice (mmol l−1, molar equivalents of AA)

VAL:

Valencia Late cultivar

y :

Time-dependent concentration of DPPH (μmol l−1)

y 1 :

Asymptotic value of the DPPH concentration (μmol l−1) due solely to the cumulative FAA of juice

y 2 :

Asymptotic value of the DPPH concentration (μmol l−1) due solely to the cumulative SAA of juice

y 0 :

Initial concentration of DPPH (μmol l−1)

y s :

Experimental asymptotic value of the DPPH concentration (μmol l−1) due to TAA

ρ 1 :

Adjustable parameter (=k 1/σ 1, l mol−1 min−1)

ρ 2 :

Adjustable parameter (=k 2/σ 2, l mol−1 min−1)

σ 1 :

Average stoichiometric constant of cumulative FAA

σ 2 :

Average stoichiometric constant of cumulative SAA

References

  1. Sánchez-Moreno C, Cano MP, De Ancos B, Plaza L, Olmedilla B, Granado F, Martin A (2003) Am J Clin Nutr 78:454–460

    Google Scholar 

  2. Johnston CS, Dancho CL, Strong GM (2003) J Am Coll Nutr 22:519–523

    Article  CAS  Google Scholar 

  3. Franke AA, Cooney RV, Henning SM, Custer LJ (2005) J Agric Food Chem 53:5170–5178

    Article  CAS  Google Scholar 

  4. Middleton E Jr, Kandaswami C, Theoharides TC (2000) Pharmacol Rev 52:673–751

    CAS  Google Scholar 

  5. Block G, Patterson B, Subar A (1992) Nutr Cancer 18:1–29

    Article  CAS  Google Scholar 

  6. Steinmetz KA, Potter JD (1996) J Am Diet Assoc 53:536–543

    Google Scholar 

  7. So FV, Guthrie N, Chambers AF, Moussa M, Carroll KK (1996) Nutr Cancer 26:167–181

    CAS  Google Scholar 

  8. Silalahi J (2002) Asia Pac J Clin Nutr 11:79--84

    Article  Google Scholar 

  9. Ikegawa T, Ushigome F, Koyabu N, Morimoto S, Shoyama Y, Naito M, Tsuruo T, Ohtani H, Sawada Y (2000) Cancer Lett 160:21–28

    Article  CAS  Google Scholar 

  10. Sendra JM, Navarro JL, Izquierdo L (1988) J Chromatogr Sci 26:443–448

    CAS  Google Scholar 

  11. Gil-Izquierdo A, Gil MI, Ferreres F, Tomas-Barberan FA (2001) J Agric Food Chem 49:1035–1041

    Article  CAS  Google Scholar 

  12. Gil-Izquierdo A, Gil MI, Ferreres F (2002) J Agric Food Chem 50:5107–5114

    Article  CAS  Google Scholar 

  13. lo Scalzo R, Iannoccari T, Summa C, Morelli R, Rapisarda P (2004) Food Chem 85:41–47

    Article  CAS  Google Scholar 

  14. Piga A, Agabbio M, Gambella F, Nicoli MC (2002) Lebens Wiss Technol 35:344–347

    Article  CAS  Google Scholar 

  15. Miller NJ, Rice-Evans CA (1997) Food Chem 60:331–337

    Article  CAS  Google Scholar 

  16. Sendra JM, Sentandreu E, Navarro JL (2006) Eur Food Res Technol 223:615–624

    Article  CAS  Google Scholar 

  17. Sentandreu E, Izquierdo L, Sendra JM (2006) Eur Food Res Technol. DOI: 10.1007/s00217-006-0330-0

  18. Sentandreu E, Izquierdo L, Sendra JM (2006) Eur Food Res Technol. DOI: 10.1007/s00217-006-0414-x

  19. Sentandreu E, Carbonell L, Carbonell JV, Izquierdo L (2005) Food Sci Technol Int 11:217–222

    Article  CAS  Google Scholar 

  20. Rouseff RL (1988) Differentiating Citrus Juices Using Flavanone Glycoside Concentration Profiles. In: Nagy S, Attaway JA, Rhodes ME (eds) Adulteration of Fruit Juice Beverages. M. Dekker, New York, pp 49–65

  21. Cameron RG, Baker RA, Grohmann K (1997) J Food Sci 62:242–245

    Article  CAS  Google Scholar 

  22. Baker RA, Cameron RG (1999) Food Technol 53:64–69

    Google Scholar 

  23. Saito S, Okamoto Y, Kawabata, J (2004) Biosci Biotechnol Biochem 68:1221–1227

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministerio de Educación y Ciencia (Spain), project AGL2002-01172ALI, and AGROALIMED (Consellería de Agricultura, Pesca i Alimentació, Generalitat Valenciana, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Sendra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sentandreu, E., Navarro, J.L. & Sendra, J.M. Effect of technological processes and storage on flavonoids content and total, cumulative fast-kinetics and cumulative slow-kinetics antiradical activities of citrus juices. Eur Food Res Technol 225, 905–912 (2007). https://doi.org/10.1007/s00217-006-0500-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-006-0500-0

Keywords

Navigation