Skip to main content
Log in

Enzymatic cross-linking of ewe's milk proteins by transglutaminase

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Enzymatic cross-linking of ewe's milk proteins in the presence of transglutaminase was studied and the extent of cross-linking was analysed by capillary gel electrophoresis. Up to now, no publications are available that study the relative susceptibility of individual ewe's milk proteins. Transglutaminase has been demonstrated to induce cross-linking of the ewe's milk proteins. Moreover, a heat treatment of the milk before the reaction with transglutaminase enhanced the susceptibility of the individual ewe's milk proteins towards the cross-linking reaction. The specificity of transglutaminase has been shown to vary with the type of ewe's milk proteins (αs2-casein, αs1-casein, αs0-casein, κ-casein, β-casein A1, β-casein A2, α-lactalbumin and β-lactoglubulin). From our findings, the reactivity for ovine α-caseins was reduced with respect to that of ovine κ-casein and ovine β-caseins. An optimisation strategy based on desirability functions together with experimental design has been used to optimise the preheating conditions (temperature and time) of ovine milk that maximised the cross-linking reactions catalysed by transglutaminase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Reference

  1. Feeney RE, Whitaker JR (1998) Adv Cereal Sci Technol 9:21–43

    Google Scholar 

  2. Gerrard JA (2002) Trends Food Sci Technol 13:389–397

    Article  CAS  Google Scholar 

  3. Singh H (1991) Trends Food Sci Technol 2:196–200

    Article  CAS  Google Scholar 

  4. Rasiah IA, Sutton KH, Low FL, Lin H, Gerrard JA (2005) Food Chem 89:325–332

    Article  CAS  Google Scholar 

  5. Gujral HS, Rosell CM (2004) Food Res Int 37:75–81

    Article  CAS  Google Scholar 

  6. Thalmann CR, Lotzbeyer T (2002) 214:276–281

  7. Motoki M, Seguro K (1998) 9:204–210

  8. Dickinson E (1997) Trends Food Sci Technol 8:334–339

    Article  CAS  Google Scholar 

  9. Kolodziejska I, Kaczorowski K, Piotrowska B, Sadowska M (2004) Food Chem 86:203–209

    Article  CAS  Google Scholar 

  10. Uresti RM, Téllez-Luis SJ, Ramírez JA, Vázquez M (2004) Food Chem 86:257–262

    Article  CAS  Google Scholar 

  11. Gujral HS, Rosell CM (2004) J Cereal Sci 39:225–230

    Article  CAS  Google Scholar 

  12. Ramírez-Suárez JC, Xiong YL (2003) Meat Sci 65:899–907

    Article  CAS  Google Scholar 

  13. Walsh DJ, Cleary D, McCarthy E, Murphy S, FitzGerald RJ (2003) Food Res Int 36:677–683

    Article  CAS  Google Scholar 

  14. Schorsch C, Carrie H, Clark AH, Norton IT (2000) Int Dairy J 10:519–528

    Article  CAS  Google Scholar 

  15. Yokoyama N, Kikuchi Y (2004) Appl Microbiol Biotechnol 64:447–454

    Article  CAS  Google Scholar 

  16. Lauber S, Noack I, Klostermeyer H, Henle T (2001) Eur Food Res Technol 213:246–247

    Article  CAS  Google Scholar 

  17. Zhu Y, Rinzema A, Tramper J, Bol J (1995) Appl Microbiol Biotechnol 44:277–282

    Article  CAS  Google Scholar 

  18. Cozzolino A, Di Pierro P, Mariniello L, Sorrentino A, Masi P, Porta R (2003) Biotechnol Appl Biochem 38:289–295

    Article  PubMed  CAS  Google Scholar 

  19. Sharma R, Zakora M, Qvist KB (2001) Int Dairy J 12:1005–1012

    Article  Google Scholar 

  20. Chobert JM, Briand L, Gueguen J, Popineau Y, Larre C, Haertle T (1996) Nahrung-Food 40:177–182

    Article  CAS  Google Scholar 

  21. Faergemand M, Qvist KB (1997) Food Hydrocol 11:287–292

    Article  CAS  Google Scholar 

  22. Faergemand M, Otte J, Qvist KB (1998) Int Dairy J 8:715–723

    Article  CAS  Google Scholar 

  23. Lauber S, Henle T, Klostermeyer H (2000) Eur Food Res Technol 210:305–309

    Article  CAS  Google Scholar 

  24. Lorenzen PC (2000) Milk Sci Int 55:667–670

    CAS  Google Scholar 

  25. Lorenzen PC, Neve H, Mautner A, Schlimme E (2002) Int J Dairy Technol 55:152–157

    Article  CAS  Google Scholar 

  26. Nieuwenhuizen WF, Dekker HL, De Koning L, Groneveld T, De Koster CG, De Jong GAH (2003) J Agric Food Chem 51:7132–7139

    Article  PubMed  CAS  Google Scholar 

  27. Lauber S, Noack I, Klostermeyer H, Henle T (2003) Eur Food Res Technol 216:15–17

    CAS  Google Scholar 

  28. Rodriguez-Nogales JM (2005) Int Dairy J (in press)

  29. Sharma R, Lorenzen PC, Qvist KB, Int Dairy J 11:785–793

  30. Correding M, Dalglesish DG (1999) Int Dairy J 9:233–236

    Article  Google Scholar 

  31. Miralles B, Rothbauer V, Manso MA, Amigo L, Krause I, Ramos M (2001) J Chromatogr A 915:225–230

    Article  PubMed  CAS  Google Scholar 

  32. Montgomery DC (1991) Design and analysis of experiments. Wiley, New York

    Google Scholar 

  33. Lewis GA, Mathieu D, Phan-tan-luu R (1999) Pharmaceutical experimental design. Marcel Dekker Inc, New York

    Google Scholar 

  34. Derringer G, Suich R (1980) J Quality Technol 12:214–219

    Google Scholar 

  35. Myers RH, Montgomery DC (1995) Response surface methodology: process and product optimisation using designed experiments. Wiley, New York

    Google Scholar 

  36. Kuraishi C, Yamazaki K, Susa Y (2001) Foods Rev Int 17:221–246

    Article  CAS  Google Scholar 

  37. Ikura K, Kometani K, Yoshikawa M, Sasaki R, Chiba H (1980) Agric Bio Chem 44:1567–1573

    CAS  Google Scholar 

  38. Han XQ, Damodaran S (1996) J Agric Food Chem 44:1211–1217

    Article  CAS  Google Scholar 

  39. Dalgleish DG, Bank J (1991) Milk Sci Int 46:75–78

    CAS  Google Scholar 

  40. Hil AR (1989) Can Inst Food Technol J 22:120–123

    Google Scholar 

  41. Jang HD, Swaisgood HE (1990) J Dairy Sci 73:900–904

    Article  CAS  Google Scholar 

  42. Elfagm AA, Wheelock JV (1978) J Dairy Sci 61:159–163

    CAS  Google Scholar 

  43. Kinsella JE, Whitehead DM, Brady J, Bringe NA (1989) Milk proteins: possible relationships of structure and functions. In: Fox P (ed) Developments in dairy chemistry, Elsevier Applied Science, London, pp 55–95

    Google Scholar 

  44. Rollema HS (1992) Casein association and micelle formation. In: Fox PF (ed) Advanced dairy chemistry. Elsevier Science Publisher, Essex, pp 111–140

    Google Scholar 

  45. Sharma R, Lorenzen PC, Qvist KB (2001) Int Dairy J, 11:785–793

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Manuel Rodriguez-Nogales.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez-Nogales, J.M. Enzymatic cross-linking of ewe's milk proteins by transglutaminase. Eur Food Res Technol 221, 692–699 (2005). https://doi.org/10.1007/s00217-005-0041-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-005-0041-y

Keywords

Navigation