Skip to main content
Log in

An assessment of changes in thermal and physico-chemical parameters of jack bean (Canavalia ensiformis) starch following hydrothermal modifications

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Starch isolated from jack bean was modified by heat moisture treatment (HMT) and annealing. Scanning electron micrograph indicates oval and round shape for the starch granules, with heterogeneous sizes. The range of the granule size for the starches was between 10 and 20 μm for the width and 14 and 32 μm for the length.

The starches exhibited the characteristic “C” pattern for legume starches with increased starch crystallinity after modifications. Swelling power and solubility reduced following annealing and heat moisture treatment. The results also revealed that water absorption capacity increased following the heat moisture treatment but reduced after starch annealing. Both annealing and heat moisture treatment improved gelation capacity of the native starch. Gelatinization temperature increased after modifications. Both annealing and heat moisture treatments reduced starch retrogradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Adebowale KO, Lawal OS (2003) J Sci Food Agric 83:1541–1546

    Article  CAS  Google Scholar 

  2. Adebowale KO, Lawal OS (2003) Food Hydrocolloids 17:265–272

    Article  CAS  Google Scholar 

  3. Adebowale KO, Afolabi TA, Lawal OS (2002) Food Chem 78:305–311

    Article  CAS  Google Scholar 

  4. Adebowale KO, Lawal OS (2002) Nahrung/Food 46:311–316

    Article  CAS  Google Scholar 

  5. Raja MKC, Sindhu P (2000) Starch/ Starke 52:471–476

    Article  CAS  Google Scholar 

  6. Piyachomkwan K, Chotineeranat S, Kijkhunasatian C, Tonwitowat R, Prammanee S, Oates CG, Sriroth K (2002) Ind Crops Products 16:11–21

    Article  CAS  Google Scholar 

  7. Hoover R, Manuel H (1995) Food Chem 53:275–284

    Article  CAS  Google Scholar 

  8. Hoover R, Ratnayake WS (2002) Food Chem 78:489–498

    Article  CAS  Google Scholar 

  9. Abraham TE (1993) Starch/Stärke 45:131–135

    Article  CAS  Google Scholar 

  10. Collado LS, Corke H (1999) Food Chem 65:239–346

    Article  Google Scholar 

  11. Testers RF, Debon SJJ, Sommerville MD (2000) Annealing of maize starch. Carbohydr Polym 42:287–299

    Article  Google Scholar 

  12. Aiyeleye FB, Akingbala JO, Oguntimehin GB (1993) Starch/Stärke 45:443–445

    Article  CAS  Google Scholar 

  13. Forssel P, Hamunen A, Autio K, Suortti T, Poutanen K (1995) Starch/Stärke 47:371–377

    Article  Google Scholar 

  14. Kang KJ, Kim S, Lee SK, Kim SK (1994) J Appl Glycosci 41:201–204

    CAS  Google Scholar 

  15. Muhammad K, Hussin F, Man YC, Ghazali HM, Kennedy JF (2000) Carbohydr Polym 42:85–90

    Article  CAS  Google Scholar 

  16. Hoover R, Vasanthan T (1994) J Food Biochem 18:67–82

    Article  CAS  Google Scholar 

  17. Jacobs H, Earlingen RC, Clauwaert W, Delcour JA (1995) Cereal Chem 72:480–487

    CAS  Google Scholar 

  18. Knutson CA (1990) Cereal Chem 67:376–384

    CAS  Google Scholar 

  19. Larsson I., Eliasson AC (1991) Starch/Stärke 43:227–231

    Article  CAS  Google Scholar 

  20. Stute R. (1992) Starch/Stärke 44:205–214

    Article  CAS  Google Scholar 

  21. Donovan JW, Lorenz K, Kulp K (1983) Cereal Chem 60:381–387

    Google Scholar 

  22. Hoover R., Manuel HJ (1996) Cereal Sci 23:153–162

    Article  CAS  Google Scholar 

  23. Lorenz K, Kulp K (1982) Starch/Stärke 34:76–81

    Article  Google Scholar 

  24. Radosta S, Kettlitz B, Schierbaum F, Gernat C (1992) Starch/Stärke 44:8–14

    Article  CAS  Google Scholar 

  25. Hoover R, Manuel H (1999) Food Res Int 29:731–750

    Article  Google Scholar 

  26. Gidley MJ, Bociek SM (1985) J Am Chem Soc 107:7040–7044

    Article  CAS  Google Scholar 

  27. Gough BM, Pybus JN (1971) Starch/Stärke 23:210–212

    Article  CAS  Google Scholar 

  28. Lorenz K, Kulp K (1984) Starch/Stärke 36:116–121

    Article  Google Scholar 

  29. Leach HW, McCowen LD, Scoch TJ (1959) Cereal Chem 36:534–544

    CAS  Google Scholar 

  30. Beuchat LR (1977) J Agric Food Chem 25:258–261

    Article  CAS  Google Scholar 

  31. SAS 1988. SAS/STAT users guide, release 6.03, SAS institute Inc., Carey, NC.

  32. Gujska E, Reinhard WD, Khan K (1994) J Food Sci 50:634–636

    Article  Google Scholar 

  33. Galvez F, Resurreccion A (1993) J Food Process Preserv 17:93–107

    Article  CAS  Google Scholar 

  34. Naivikul O, D'Appolonia BL (1979) Cereal Chem 56:24–28

    CAS  Google Scholar 

  35. Sathe SK, Rangnekar PD, Deshpande SS, Salunkhe DK (1982) J Food Sci 47:1524–1527

    Article  CAS  Google Scholar 

  36. Hall DM, Sayre TG (1971) J Textile Res 41:880–886

    CAS  Google Scholar 

  37. Colona P, Buleon A, Mercier C (1981) J Food Sci 46:88–93

    Article  Google Scholar 

  38. Hoover R, Sosulski F (1985) Starch/Stärke 37:181–191

    Article  CAS  Google Scholar 

  39. Gernat C, Radosta S, Damaschun G, Schierbaum F (1990) Starch/Stärke 42:175–178

    Article  CAS  Google Scholar 

  40. Chavan UD, Shahidi F, Hoover R, Perera C (1999) Food Chem 65:61–70

    Article  CAS  Google Scholar 

  41. Hoover R, Vasanthan T (1994) Carbohydr Res 252:33–53

    PubMed  CAS  Google Scholar 

  42. Kulp K, Lorenz K (1981) Cereal Chem 58:46–48

    Google Scholar 

  43. Sair L (1967) Cereal Chem 44:8–26

    CAS  Google Scholar 

  44. Morrison WR, Tester RF, Gidley MJ (1994) J Cereal Sci 19:209–217

    Article  CAS  Google Scholar 

  45. Hoover R, Vasanthan T, Senanayake N, Martin A (1994) Carbohydr Res 261:13–24

    Article  CAS  Google Scholar 

  46. Ratnayake WS, Hoover R, Shahidi F, Perera C, Jane J (2001) J Food Chem 74:189–202

    Article  CAS  Google Scholar 

  47. Eliasson AC (1980) Starch/Stärke 32:270

    Article  CAS  Google Scholar 

  48. Tester RF, Debon SJJ, Sommerville MD (2000) Carbohydr Polym 42:287–299

    Article  CAS  Google Scholar 

  49. Chavan UD, Shahidi F, Hoover R, Perera C (1999) Food Chem 65:61–70

    Article  CAS  Google Scholar 

  50. Kudo K Proceedings of Australia/Japan symposium on food science and technology, 1993 pp 205–210

  51. Zobel HF (1992) Starch granule structure. In: Alexander RJ, Zobel HF (eds) Developments in carbohydrate chemistry. American Association of Cereal Chemists, Minnesota, pp 1–33

    Google Scholar 

  52. Baker LA, Rayas-Duarte P (1998) Cereal Chem 75:301–303

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We acknowledge with thanks the support of Abdus Salam International Centre for Theoretical Physics, Trieste, Italy. Professor Atilio Cesaro and Fabiana Sussich of Department of Biophysics, Biochemistry and Macromolecular Chemistry, University of Trieste, Italy provided facilities for differential scanning calorimetry. We also thank Dr Luisa Barba of ELLETRA, Area Science Park, Bassovissa, Italy, for providing facilities for wide-angle X-ray diffractometry

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Lawal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawal, O.S., Adebowale, K.O. An assessment of changes in thermal and physico-chemical parameters of jack bean (Canavalia ensiformis) starch following hydrothermal modifications. Eur Food Res Technol 221, 631–638 (2005). https://doi.org/10.1007/s00217-005-0032-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-005-0032-z

Keywords

Navigation