Skip to main content
Log in

A near-infrared fluorescent probe with viscosity sensitivity in lysosome for cancer visualization

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A viscosity-sensitive, lysosome-targeted near-infrared fluorescent probe (PYATT) was reported in this paper. The fluorescent spectra of PYATT are strongly dependent on viscosity, resulting in a Stokes shift of about 190 nm. Given its photostability, low cytotoxicity, and high fluorescence quantum yield, PYATT is expected to be used in cell imaging. Due to the higher viscosity of tumor cells than normal cells, the fluorescence intensity of PYATT in tumor cells is higher than normal cells, which can realize the visualization of tumors. The near-infrared probe (PYATT) is viscosity-dependent in lysosomes, which is valuable in early diagnosis and treatment of tumor.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ludwanowski S, Samanta A, Loescher S, Barner-Kowollik C, Walther A. A modular fluorescent probe for viscosity and polarity sensing in DNA hybrid mesostructures. Adv Sci. 2021;8(5):2003740. https://doi.org/10.1002/advs.202003740.

    Article  CAS  Google Scholar 

  2. Robson JA, Kubánková M, Bond T, Hendley RA, White AJP, Kuimova MK, Wilton-Ely JDET. Simultaneous detection of carbon monoxide and viscosity changes in cells. Angew Chem Int Ed. 2020;59(48):21431–5. https://doi.org/10.1002/anie.202008224.

    Article  CAS  Google Scholar 

  3. Wang YN, Zhao XQ, Qiu LH, Sun R, Xu YJ, Ge JF. Viscosity sensitive endoplasmic reticulum fluorescent probes based on oxazolopyrdinium. J Mater Chem B. 2021;9(28):5664–9. https://doi.org/10.1039/D1TB01106E.

    Article  PubMed  CAS  Google Scholar 

  4. Feng S, Gong S, Zheng Z, Feng G. Smart dual-response probe reveals an increase of GSH level and viscosity in cisplatin-induced apoptosis and provides dual-channel imaging for tumor. Sensor Actuat B-Chem. 2021;351: 130940. https://doi.org/10.1016/j.snb.2021.130940.

    Article  CAS  Google Scholar 

  5. Li S, Wang P, Feng W, Xiang Y, Dou K, Liu Z. Simultaneous imaging of mitochondrial viscosity and hydrogen peroxide in Alzheimer’s disease by a single near-infrared fluorescent probe with a large Stokes shift. Chem Commun. 2019;56(7):1050–3. https://doi.org/10.1039/c9cc08267k.

    Article  CAS  Google Scholar 

  6. Shen B, Wang L, Zhi X, Qian Y. Construction of a red emission BODIPY-based probe for tracing lysosomal viscosity changes in culture cells. Sensor Actuat B-Chem. 2019;304: 127271. https://doi.org/10.1016/j.snb.2019.127271.

    Article  CAS  Google Scholar 

  7. Kim Y, Choi M, Mulay SV, Jang M, Kim JY, Lee WH, Jon S, Churchill DG. Aqueous red-emissive probe for the selective fluorescent detection of cysteine by deprotection/cyclization cascade resulting in large stokes’ shift. Chem Eur J. 2018;24(21):5623–9. https://doi.org/10.1002/chem.201706073.

    Article  PubMed  CAS  Google Scholar 

  8. Gao Y, Hu Y, Liu Q, Li XK, Li XM, Kim CY, James TD, Li J, Chen X, Guo Y. Two-dimensional design strategy to construct smart fluorescent probes for the precise tracking of senescence. Angew Chem Int Ed. 2021;60(19):10756–65. https://doi.org/10.1002/anie.202101278.

    Article  CAS  Google Scholar 

  9. Piazzolla F, Mercier V, Assies L, Sakai N, Roux A, Matile S. Fluorescent membrane tension probes for early endosomes. Angew Chem Int Ed. 2021;60(22):12258–63. https://doi.org/10.1002/anie.202016105.

    Article  CAS  Google Scholar 

  10. Reja SI, Minoshima M, Hori Y, Kikuchi K. Near-infrared fluorescent probes: a next-generation tool for protein-labeling applications. Chem Sci. 2021;12(10):3437–47. https://doi.org/10.1039/d0sc04792a.

    Article  CAS  Google Scholar 

  11. Georgiev NI, Marinova NV, Bojinov VB. Design and synthesis of light-harvesting rotor based on 1,8-naphthalimide units. J Photoch Photobio A. 2020;401: 112733. https://doi.org/10.1016/j.jphotochem.2020.112733.

    Article  CAS  Google Scholar 

  12. Yan F, Sun X, Ma T, Zhang Y, Jiang Y, Wang R, Ma C, Wei J, Chen L, Cui Y. A viscosity-dependent carbon dots with anti-VEGF properties for monitoring and promoting apoptosis in cancerous cell. Chem Eng J. 2021;407: 127801. https://doi.org/10.1016/j.cej.2020.127801.

    Article  CAS  Google Scholar 

  13. Zhou Y, Liu Z, Qiao G, Tang B, Li P. Visualization of endoplasmic reticulum viscosity in the liver of mice with nonalcoholic fatty liver disease by a near-infrared fluorescence probe. Chinese Chem Lett. 2021;32(11):3641–5. https://doi.org/10.1016/j.cclet.2021.04.035.

    Article  CAS  Google Scholar 

  14. Boyle B, Dive C, Fitzgerald R, Hanna GB, Hill S, Hunter D, Janes S, Kaye S, Kumar H, Oien K, Palmer C, Richards A, Richards M, Sasieni P, Steele B, Walter F. A roadmap for the early detection and diagnosis of cancer. Lancet Oncol. 2020;21(11):1397–9. https://doi.org/10.1016/S1470-2045(20)30593-3.

    Article  Google Scholar 

  15. Chinen AB, Guan CM, Ferrer JR, Barnaby SN, Merkel TJ, Mirkin CA. Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem Rev. 2015;115(19):10530–74. https://doi.org/10.1021/acs.chemrev.5b00321.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Li ZP, Wang YF, Zeng CC, Hu LM, Liang XJ. Ultrasensitive tyrosinase activated turn-on near-infrared fluorescent probe with a rationally designed urea bond for selective imaging and photodamage to melanoma cells. Anal Chem. 2018;90(6):3666–9. https://doi.org/10.1021/acs.analchem.7b05369.

    Article  PubMed  CAS  Google Scholar 

  17. Liu JN, Bu WB, Shi JL. Chemical design and synthesis of functionalized probes for imaging and treating tumor hypoxia. Chem Rev. 2017;117(9):6160–224. https://doi.org/10.1021/acs.chemrev.6b00525.

    Article  PubMed  CAS  Google Scholar 

  18. Jiang L, Chen T, Song E, Fan Y, Min D, Zeng L, Bao GM. High-performance near-infrared fluorescence probe for fast and specific visualization of harmful sulfite in food, living cells, and zebrafish. Chem Eng J. 2022;427: 131563. https://doi.org/10.1016/j.cej.2021.131563.

    Article  CAS  Google Scholar 

  19. Zong C, Lu Q, Niu J, Meng F, Yu X. A fluorescent probe for detecting mitochondrial viscosity and its application in distinguishing human breast cancer cells from normal ones. Spectrochim Acta A. 2023;299: 122883. https://doi.org/10.1016/j.saa.2023.122883.

    Article  CAS  Google Scholar 

  20. Yang L, Gu P, Fu A, Xi Y, Cui S, Ji L, Li L, Ma N, Wang Q, He G. TPE-based fluorescent probe for dual channel imaging of pH/viscosity and selective visualization of cancer cells and tissues. Talanta. 2023;265: 124862. https://doi.org/10.1016/j.talanta.2023.124862.

    Article  PubMed  CAS  Google Scholar 

  21. Han S, Yang L, Liu M, Li H, Song X. Accurate diagnosis of hepatic fibrosis with dual detection of nitric oxide and viscosity by a ratiometric fluorescent probe. Chem Eng J. 2023;463: 142383. https://doi.org/10.1016/j.cej.2023.142383.

    Article  CAS  Google Scholar 

  22. Zheng F, Ding J, Huang S, Bi A, Liu S, Zhang K, Chen F, Zeng W. Real-time monitoring viscosity during ferroptosis with a novel mitochondria-specific fluorescent probe. Dyes Pigments. 2023;217: 111424. https://doi.org/10.1016/j.dyepig.2023.111424.

    Article  CAS  Google Scholar 

  23. Dou K, Huang W, Xiang Y, Li S, Liu Z. Design of activatable NIR-II molecular probe for in vivo elucidation of disease-related viscosity variations. Anal Chem. 2020;92(6):4177–81. https://doi.org/10.1021/acs.analchem.0c00634.

    Article  PubMed  CAS  Google Scholar 

  24. Shi WJ, Yang J, Wei YF, Li XT, Yan XH, Wang Y, Leng H, Zheng L, Yan JW. Novel cationic meso-CF3 BODIPY-based AIE fluorescent rotors for imaging viscosity in mitochondria. Chem Commun. 2022;58(12):1930–3. https://doi.org/10.1039/d1cc06532g.

    Article  CAS  Google Scholar 

  25. Liu Y, Feng S, Gong S, Feng G. Dual-channel fluorescent probe for detecting viscosity and ONOO without signal crosstalk in nonalcoholic fatty liver. Anal Chem. 2022;94(50):17439–47. https://doi.org/10.1021/acs.analchem.2c03419.

    Article  PubMed  CAS  Google Scholar 

  26. Kim SJ, Park SY, Yoon SA, Kim C, Kang C, Lee MH. Naphthalimide-4-(4-nitrophenyl)thiosemicarbazide: a fluorescent probe for simultaneous monitoring of viscosity and nitric oxide in living cells. Anal Chem. 2021;93(10):4391–7. https://doi.org/10.1021/acs.analchem.0c04019.

    Article  PubMed  CAS  Google Scholar 

  27. Wang L, Xiao Y, Tian W, Deng L. Activatable rotor for quantifying lysosomal viscosity in living cells. J Am Chem Soc. 2013;135(8):2903–6. https://doi.org/10.1021/ja311688g.

    Article  PubMed  CAS  Google Scholar 

  28. Zhang Z, Kang M, Tan H, Song N, Li M, Xiao P, Yan D, Zhang L, Wang D, Tang BZ. The fast-growing field of photo-driven theranostics based on aggregation-induced emission. Chem Soc Rev. 2022;51(6):1983–2030. https://doi.org/10.1039/d1cs01138c.

    Article  PubMed  CAS  Google Scholar 

  29. Würthner F. Aggregation-induced emission (AIE): a historical perspective. Angew Chem Int Ed. 2020;59(34):14192–6. https://doi.org/10.1002/anie.202007525.

    Article  CAS  Google Scholar 

  30. Feng S, Liu Y, Li Q, Gui Z, Feng G. Two water-soluble and wash-free fluorogenic probes for specific lighting up cancer cell membranes and tumors. Anal Chem. 2022;94(3):1601–7. https://doi.org/10.1021/acs.analchem.1c03685.

    Article  PubMed  CAS  Google Scholar 

  31. Fu L, Zhao W, Tan Y, Ding Y, Wang Y, Qing W. Rational design of water-soluble mitochondrial-targeting near-infrared fluorescent probes with large Stokes shift for distinguishing cancerous cells and bioimaging. Spectrochim Acta A. 2023;299: 122869. https://doi.org/10.1016/j.saa.2023.122869.

    Article  CAS  Google Scholar 

  32. Fu L, Tan Y, Ding Y, Qing W, Wang Y. Water-soluble and polarity-sensitive near-infrared fluorescent probe for long-time specific cancer cell membranes imaging and C. elegans label. Chinese Chem Lett. 2023. https://doi.org/10.1016/j.cclet.2023.108886.

  33. Leung MCK, Williams PL, Benedetto A, Au C, Helmcke KJ, Aschner M, Meyer JN. Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol Sci. 2008;106(1):5–28. https://doi.org/10.1093/toxsci/kfn121.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Wang H, Sun Y, Lin X, Feng W, Li Z, Yu M. Multi-organelle-targeting pH-dependent NIR fluorescent probe for lysosomal viscosity. Chinese Chem Lett. 2023;34(3): 107626. https://doi.org/10.1016/j.cclet.2022.06.049.

    Article  CAS  Google Scholar 

  35. Wu X, Wang X, Li Y, Kong F, Xu K, Li L, Tang B. A near-infrared probe for specific imaging of lipid droplets in living cells. Anal Chem. 2022;94(11):4881–8. https://doi.org/10.1021/acs.analchem.2c00651.

    Article  PubMed  CAS  Google Scholar 

  36. Wang X, Chen Q, Dong K, Sun C, Huang Y, Qiang Z, Chen B, Chen M, Feng Y, Meng X. Accurate monitoring and multiple evaluations of mitophagy by a versatile two-photon fluorescent probe. Anal Chem. 2021;93(26):9200–8. https://doi.org/10.1021/acs.analchem.1c01365.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Henan Provincial Science and Technology Research Project of China (No. 232102310369).

Author information

Authors and Affiliations

Authors

Contributions

Y.W.: supervision, conceptualization, and project administration. L.F.: methodology and formal analysis. Y.T.: formal analysis and validation. Y.D.: software. W.Q.: writing, review and editing.

Corresponding author

Correspondence to Weixia Qing.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1908 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Fu, L., Tan, Y. et al. A near-infrared fluorescent probe with viscosity sensitivity in lysosome for cancer visualization. Anal Bioanal Chem 416, 341–348 (2024). https://doi.org/10.1007/s00216-023-05050-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-05050-6

Keywords

Navigation