Skip to main content
Log in

Simultaneous speciation analysis of Hg and Se in fish by high-performance liquid chromatography and inductively coupled plasma-mass spectrometry following microwave-assisted enzymatic hydrolysis

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This study reports the development and validation of a new analytical method for simultaneous speciation analysis of Se and Hg in fish muscle. For this purpose, four Se species (selenite/Se(IV), selenate/Se(VI), selenomethionine/SeMet, and selenocysteine/SeCys) and two Hg species (inorganic mercury/iHg and methylmercury/MeHg) were extracted simultaneously by microwave-assisted enzymatic hydrolysis and then separated by HPLC in less than 15 min by using a column with both anion and cation exchange mechanisms and a mobile phase consisting of a mixture of methanol 5% (v/v), 45 mM HNO3, 0.015% 2-mercaptoethanol, and 1.5 mM sodium 3-mercapto-1-propanesulfonate. The separated species of Hg and Se were detected online by inductively coupled plasma-mass spectrometry (ICP-MS). The speciation analysis method was validated by means of the accuracy profile approach by carrying out three series of measurements in duplicate on three different days over a time-span of 3 weeks. The limits of quantification (LOQ) are in the range of 0.010–0.013 mg/kg wet weight (ww) for all selenium species, except for Se(IV) (0.15 mg/kg ww), while the coefficient of variation in terms of intermediate reproducibility (CVR) was < 7%. The LOQ for MeHg was 0.006 mg/kg ww, while the CVR was 3%. The method was successfully applied to the analysis of muscle samples from four different fish species: rainbow trout, tuna, swordfish, and dogfish.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dang F, Wang WX. Antagonistic interaction of mercury and selenium in a marine fish is dependent on their chemical species. Environ Sci Technol. 2011. https://doi.org/10.1021/es103705a.

    Article  PubMed  Google Scholar 

  2. Ribeiro M, Zephyr N, Silva JA, Danion M, Guérin T, Castanheira I, Leufroy A, Jitaru P. Assessment of the mercury-selenium antagonism in rainbow trout fish. Chemosphere. 2022. https://doi.org/10.1016/j.chemosphere.2021.131749.

    Article  PubMed  Google Scholar 

  3. Gajdosechova Z, Mester Z, Feldmann J, Krupp EM. The role of selenium in mercury toxicity – current analytical techniques and future trends in analysis of selenium and mercury interactions in biological matrices. Trends Analyt Chem. 2018. https://doi.org/10.1016/j.trac.2017.12.005.

    Article  Google Scholar 

  4. Clémens S, Monperrus M, Amouroux D, Guérin T, Donard O. Mercury speciation in seafood using isotope dilution analysis: a review. Talanta. 2012. https://doi.org/10.1016/j.talanta.2011.12.064.

    Article  PubMed  Google Scholar 

  5. Jagtap, R, Maher, W. Determination of selenium species in biota with an emphasis on animal tissues by HPLC–ICP-MS. 2016. https://doi.org/10.1016/j.microc.2015.07.014.

  6. Li YF, Chen C, Li B, Wang Q, Wang J, Gao Y, Zhao Y, Chai Z. Simultaneous speciation of selenium and mercury in human urine samples from long-term mercury-exposed populations with supplementation of selenium-enriched yeast by HPLC-ICP-MS. J Anal At Spectrom. 2007. https://doi.org/10.1039/B703310A.

    Article  Google Scholar 

  7. Favilli L, Giacomino A, Malandrino M, Inaudi P, Diana A, Abollino O. Strategies for mercury speciation with single and multi-element approaches by HPLC-ICP-MS. Front Chem. 2022. https://doi.org/10.3389/fchem.2022.1082956.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Marcinkowska M, Barałkiewicz D. Multielemental speciation analysis by advanced hyphenated technique - HPLC/ICP-MS: a review. Talanta. 2016. https://doi.org/10.1016/j.talanta.2016.08.034.

    Article  PubMed  Google Scholar 

  9. Maher M, Krikowa F, Ellwood W, Foster S, Jagtap R, Raber G. Overview of hyphenated techniques using an ICP-MS detector with an emphasis on extraction techniques for measurement of metalloids by HPLC–ICPMS. Microchem J. 2012. https://doi.org/10.1016/j.microc.2012.03.017.

    Article  Google Scholar 

  10. Moreno F, García-Barrera T, Gómez-Ariza J. Simultaneous analysis of mercury and selenium species including chiral forms of selenomethionine in human urine and serum by HPLC column-switching coupled to ICP-MS. Analyst. 2010. https://doi.org/10.1039/c0an00090f.

    Article  PubMed  Google Scholar 

  11. Moreno F, García-Barrera T, Gómez-Ariza J. Simultaneous speciation and preconcentration of ultra trace concentrations of mercury and selenium species in environmental and biological samples by hollow fiber liquid phase microextraction prior to high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry. J Chromatogr A. 2013. https://doi.org/10.1016/j.chroma.2013.02.083.

    Article  PubMed  Google Scholar 

  12. Sele V, Ørnsruda R, Sloth JJ, Amlund H, Berntssena MHG. Selenium and selenium species in feeds and muscle tissue of Atlantic salmon. J Trace Elem Med Biol. 2018. https://doi.org/10.1016/j.jtemb.2018.02.005.

    Article  PubMed  Google Scholar 

  13. Ghosn M, Chekri R, Mahfouz C, Khalaf G, Guérin T, Amara R, Jitaru P. Toward a routine methodology for speciation analysis of methylmercury in fishery products by HPLC coupled to ICP-MS following the validation based on the accuracy profile approach. Int J Environ Anal Chem. 2020. https://doi.org/10.1080/03067319.2020.1767095.

  14. Pohl CA, Stillian JR, Jacks PE. Factors controlling ion-exchange selectivity in suppressed ion chromatography. J Chromatogr A. 1997. https://doi.org/10.1016/S0021-9673(97)00705-X.

    Article  Google Scholar 

  15. AFNOR. NF V03-110 Analysis of Agri-Foodstuffs. Protocol of Characterization for the Validation of a Quantitative Method of Analysis by Construction of an Accuracy Profile. 2010. https://www.boutique.afnor.org/en-gb/standard/nf-v03110/analysis-ofagrifoodstuffs-protocol-of-characterization-for-the-validation-/fa159944/35346. Accessed 16 May 2023.

  16. Mermet JM, Granier G. Potential of accuracy profile for method validation in inductively coupled plasma spectrochemistry. Spectrochim Acta B. 2012. https://doi.org/10.1016/j.sab.2012.06.003.

    Article  Google Scholar 

  17. López I, Cuello S, Cámara C, Madrid Y. Approach for rapid extraction and speciation of mercury using a microtip ultrasonic probe followed by LC–ICP-MS. Talanta. 2010;82(2):594–9. https://doi.org/10.1016/j.talanta.2010.05.013.

    Article  CAS  PubMed  Google Scholar 

  18. Leufroy A, Noël L, Dufailly V, Beauchemin D, Guérin T. Determination of seven arsenic species in seafood by ion exchange chromatography coupled to inductively coupled plasma-mass spectrometry following microwave assisted extraction: method validation and occurrence data. Talanta. 2011. https://doi.org/10.1016/j.talanta.2010.10.050.

    Article  PubMed  Google Scholar 

  19. Harrington CF, Merson SA, D’ Silva TM. Method to reduce the memory effect of mercury in the analysis of fish tissue using inductively coupled plasma mass spectrometry. Anal Chim Acta. 2004. https://doi.org/10.1016/j.aca.2003.10.046.

  20. Bednar AJ, Kirgan R, Jones W. Comparison of standard and reaction cell inductively coupled plasma mass spectrometry in the determination of chromium and selenium species by HPLC–ICP–MS. Anal Chim Acta. 2009. https://doi.org/10.1016/j.aca.2008.10.050.

    Article  PubMed  Google Scholar 

  21. Chevallier E, Chekri R, Zinck J, Guérin T, Noel L. Simultaneous determination of 31 elements in foodstufs by ICP-MS after closed-vessel microwave digestion: method validation based on the accuracy profile. J Food Compos Anal. 2015;41:35–41.

    Article  CAS  Google Scholar 

  22. Moreno P, Quijano MA, Gutiérrez AM, Pérez-Conde MC, Cámara C. Study of selenium species distribution in biological tissues by size exclusion and ion exchange chromatagraphy inductively coupled plasma–mass spectrometry. Anal Chim Acta. 2004. https://doi.org/10.1016/j.aca.2004.02.029.

    Article  Google Scholar 

  23. Jagtap R, Maher W, Krikowa F, Ellwood MJ, Foster S. Measurement of selenomethionine and selenocysteine in fish tissues using HPLC-ICP-MS. Microchem J. 2016. https://doi.org/10.1016/j.microc.2016.04.021.

    Article  Google Scholar 

  24. Vicente-Zurdo D, Gómez-Gómez B, Pérez-Corona MT, Madrid Y. Impact of fish growing conditions and cooking methods on selenium species in swordfish and salmon fillets. J Food Compost Anal. 2019. https://doi.org/10.1016/j.jfca.2019.103275.

    Article  Google Scholar 

  25. Burger J, Gochfeld M. Selenium and mercury molar ratios in saltwater fish from New Jersey: individual and species variability complicate use in human health fish consumption advisories. Environ Res. 2012;114:12–23. https://doi.org/10.1016/j.envres.2012.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. European Commission. Commission regulation (EU) 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006. Official Journal of the European Union. 2006. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02023R0915-20230810. Accessed 16 May 2023.

  27. Liao W, Wang G, Zhao W, Zhang M, Wu Y, Liu X, Li K. Change in mercury speciation in seafood after cooking and gastrointestinal digestion. J Hazard Mater. 2019. https://doi.org/10.1016/j.jhazmat.2019.03.093.

    Article  PubMed  Google Scholar 

  28. Deng DF, Teh F, Teh SJ. Effect of dietary methylmercury and seleno-methionine on Sacramento splittail larvae. Sci Total Environ. 2008. https://doi.org/10.1016/j.scitotenv.2008.08.028.

    Article  PubMed  Google Scholar 

  29. Kumari S, Amit Jamwal R, Mishra N, Singh DK. Recent developments in environmental mercury bioremediation and its toxicity: a review. Environ. Nanotechnol. Monit Manag. 2020. https://doi.org/10.1016/j.enmm.2020.100283.

  30. Mateu MB, Llovet MI, Bonancia BM, Roig JLD, Linares-Vidal V. Effects of cooking process on the concentrations of mercury, selenium and GPx activity in Tuna (Thunnus thynnus). Toxicol Lett. 2015. https://doi.org/10.1016/j.toxlet.2015.08.228.

    Article  Google Scholar 

  31. FDA. Mercury concentrations in fish from the FDA Monitoring Program (1990–2010). 2010. https://www.fda.gov/food/environmental-contaminants-food/mercury-food-and-dietary-supplements. Accessed 26 June 2023.

  32. Zmozinski AV, Carneado S, Ibáñez-Palomino C, Sahuquillo A, López-Sánchez JF, Silva MM. Method development for the simultaneous determination of methylmercury and inorganic mercury in seafood. Food Control. 2014. https://doi.org/10.1016/j.foodcont.2014.05.054.

    Article  Google Scholar 

  33. Shao LJ, Gan WE, Su QD. Determination of total and inorganic mercury in fish samples with on-line oxidation coupled to atomic fluorescence spectrometry. Anal Chim Acta. 2006. https://doi.org/10.1016/j.aca.2006.01.039.

    Article  Google Scholar 

Download references

Acknowledgements

This study is a contribution to the Ph.D. research project (MERSEL-FISH) and it was jointly funded by ANSES (France) and INSA (Portugal).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation: Mariana Ribeiro, José Armando Luísa da Silva, Isabel Castanheira, Axelle Leufroy, and Petru Jitaru. Data curation: Mariana Ribeiro, Isabel Castanheira, Axelle Leufroy, and Petru Jitaru. Formal analysis: Mariana Ribeiro and Eleonora Galli. Funding acquisition: Isabel Castanheira, Axelle Leufroy, and Petru Jitaru. Investigation: Mariana Ribeiro, Isabel Castanheira, and Petru Jitaru. Methodology: Mariana Ribeiro, Eleonora Galli, José Armando Luísa da Silva, Isabel Castanheira, Axelle Leufroy, and Petru Jitaru. Project administration: Isabel Castanheira and Petru Jitaru. Resources: Thierry Guérin, Isabel Castanheira, and Petru Jitaru. Supervision: Isabel Castanheira, Axelle Leufroy, and Petru Jitaru. Validation: Mariana Ribeiro, Eleonora Galli, José Armando Luísa da Silva, Isabel Castanheira, Axelle Leufroy, and Petru Jitaru. Roles/writing—original: Mariana Ribeiro. Writing—review and editing: Thierry Guérin, Isabel Castanheira, Axelle Leufroy, and Petru Jitaru.

Corresponding author

Correspondence to P. Jitaru.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, M., Galli, E., Guérin, T. et al. Simultaneous speciation analysis of Hg and Se in fish by high-performance liquid chromatography and inductively coupled plasma-mass spectrometry following microwave-assisted enzymatic hydrolysis. Anal Bioanal Chem 415, 7175–7186 (2023). https://doi.org/10.1007/s00216-023-04984-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04984-1

Keywords

Navigation