Skip to main content
Log in

Portable smartphone-assisted ratiometric fluorescent test paper based on one-pot synthesized dual emissive carbon dots for visualization and quantification of mercury ions

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Dual-emissive fluorescent carbon dots (CDs) were prepared through the solvothermal method with citric acid and urea as raw materials and dimethylformamide as the solvent. Two emission peaks were observed at 465 nm and 630 nm. Hg2+ could selectively quench the fluorescence at 630 nm, but the fluorescence intensity at 465 nm was less affected. Accordingly, a ratiometric fluorescence sensor for Hg2+ detection was developed, with a linear detection range of 0.5–40 μM and a limit of detection (LOD) of 37 nM. The dual-emissive CDs were loaded on the surface of the filter paper to fabricate Hg2+ detection test paper. The color of the test paper could be changed from pink purple to blue by the addition of Hg2+, and thus the qualitative and quantitative detection of Hg2+ could be realized. The concentration distinguishable by the naked eye reached 50 μM, and the quantitative detection range was 5–10,000 μM. This method shows excellent selectivity for Hg2+ and can be used to detect Hg2+ in real water samples, providing a highly potential sensing platform for rapid on-site detection of mercury ions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nolan EM, Lippard SJ. Tools and tactics for the optical detection of mercuric ion. Chem Rev. 2008;108:3443–80. https://doi.org/10.1021/cr068000q.

    Article  CAS  PubMed  Google Scholar 

  2. Vijayan AN, Liu ZM, Zhao HH, Zhang P. Nicking enzyme-assisted signal-amplifiable Hg2+ detection using upconversion nanoparticles. Anal Chim Acta. 2019;1072:75–80. https://doi.org/10.1016/j.aca.2019.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mahato P, Saha S, Das P, Agarwalla H, Das A. An overview of the recent developments on Hg2+ recognition. RSC Adv. 2014;4:36140–74. https://doi.org/10.1039/C4RA03594A.

    Article  CAS  Google Scholar 

  4. Zhang HD, Wu SF, Xing ZY, Wang HB. Turning waste into treasure: chicken eggshell membrane derived fluorescent carbon nanodots for the rapid and sensitive detection of Hg2+ and glutathione. Analyst. 2021;146:7250–6. https://doi.org/10.1039/d1an01582f.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang XH, Sun B, Zhang YY, Zhang QF, Akhtar MH, Li M, Gu YW, Yu C. Portable smartphone-assisted ratiometric fluorescence sensor for visual detection of glucose. Analytica Chimica Acta. 2023;4:341173. https://doi.org/10.1016/j.aca.2023.341173.

    Article  CAS  Google Scholar 

  6. Wang XH, Wang YH, Chen S, Fu P, Lin YB, Ye SY, Long YF, Gao GS, Zheng JP. A persistent luminescence resonance energy transfer-based molecular beacon probe for the highly sensitive detection of microRNA in biological samples. Biosens Bioelectron. 2022;198:113849. https://doi.org/10.1016/j.bios.2021.113849.

    Article  CAS  PubMed  Google Scholar 

  7. Wang HB, Tao BB, Wu NN, Mao AL, Zhang HD. DNA-Au nanoclusters inner filter effect induced fluorescence quenching for sensitive detection of 4-nitrophenol. J Xinyang Norm Univ (Nat Sci Ed). 2022;35(3):464–8. https://doi.org/10.3969/j.issn.1003-0972.2022.03.020.

    Article  Google Scholar 

  8. Wang HB, Tao BB, Mao AL, Xiao ZL, Liu YM. Self-assembled copper nanoclusters structure-dependent fluorescent enhancement for sensitive determination of tetracyclines by the restriction intramolecular motion. Sensor Actuat B-Chem. 2021;348:130729. https://doi.org/10.1016/j.snb.2021.130729.

    Article  CAS  Google Scholar 

  9. He MY, Shang N, Zheng B, Yue GG, Han X, Hu XB. Ultrasensitive fluorescence detection of microRNA through DNA-induced assembly of carbon dots on gold nanoparticles with no signal amplification strategy. Microchim Acta. 2022;189:217. https://doi.org/10.1007/s00604-022-05309-2.

    Article  CAS  Google Scholar 

  10. Zhu J, Chang H, Li JJ, Li X, Zhao JW. Using silicon-coated gold nanoparticles to enhance the fluorescence of CdTe quantum dot and improve the sensing ability of mercury (II). Spectrochim Acta A Mol Biomol Spectrosc. 2018;188:170–8. https://doi.org/10.1016/j.saa.2017.06.038.

    Article  CAS  PubMed  Google Scholar 

  11. Gu B, Zhou Y, Zhang X, Liu XW, Zhang YH, Marks R, Zhang H, Liu XG, Zhang QC. Thiazole derivative-modified upconversion nanoparticles for Hg2+ detection in living cells. Nanoscale. 2016;8:276–82. https://doi.org/10.1039/c5nr05286f.

    Article  CAS  PubMed  Google Scholar 

  12. Yang CC, Li YY, Wu N, Zhang YC, Feng WW, Yu MM, Li ZX. Ratiometric upconversion luminescence nanoprobes for quick sensing of Hg2+ and cells imaging. Sensor Actuat B-Chem. 2021;326:128841. https://doi.org/10.1016/j.snb.2020.128841.

    Article  CAS  Google Scholar 

  13. Zhu BY, Ren GJ, Tang MY, Chai F, Qu FY, Wang CG, Su ZM. Fluorescent silicon nanoparticles for sensing Hg2+ and Ag+ as well visualization of latent fingerprints. Dyes Pigm. 2018;149:686–95. https://doi.org/10.1016/j.dyepig.2017.11.041.

    Article  CAS  Google Scholar 

  14. Ji CY, Zhou YQ, Leblanc RM, Peng ZL. Recent developments of carbon dots in biosensing: a review. ACS Sens. 2020;5:2724–41. https://doi.org/10.1021/acssensors.0c01556.

    Article  CAS  PubMed  Google Scholar 

  15. Li PJ, Li SFY. Recent advances in fluorescence probes based on carbon dots for sensing and speciation of heavy metals. Nanophotonics. 2020;10: 877–908. https://orcid.org/0000-0002-2092-9226

  16. Lv SC, Wang P, Liu DH, Liu XK, Zhou ZQ, Wang P. Aminophenol functionalized carbon quantum dots as fluorescent sensor for nitroalkenes. Microchem J. 2023;189:108569. https://doi.org/10.1016/j.microc.2023.108569.

    Article  CAS  Google Scholar 

  17. Meng A, Xu QH, Zhao K, Li ZJ, Liang J, Li QD. A highly selective and sensitive “on-off-on” fluorescent probe for detecting Hg(II) based on Au/N-doped carbon quantum dots. Sensor Actuat B-Chem. 2018;255:657–65. https://doi.org/10.1016/j.snb.2017.08.028.

    Article  CAS  Google Scholar 

  18. Cui X, Zhu L, Wu J, Hou Y, Wang PY, Wang ZN, Yang M. A fluorescent biosensor based on carbon dots-labeled oligodeoxyribonucleotide and graphene oxide for mercury (II) detection. Biosens Bioelectron. 2015;63:506–12. https://doi.org/10.1016/j.bios.2014.07.085.

    Article  CAS  PubMed  Google Scholar 

  19. Li DY, Wang SP, Azad F, Su SC. Single-step synthesis of polychromatic carbon quantum dots for macroscopic detection of Hg2+. Ecotoxicol Environ Saf. 2020;190:110141. https://doi.org/10.1016/j.ecoenv.2019.110141.

    Article  CAS  PubMed  Google Scholar 

  20. Hao YQ, Song Y, Li TT, Tuo YZ, Tian M, Chai F. Controllable synthesis of yellow emissive carbon dots by mild heating process and their utility as fluorescent test paper for detection of mercury(II) ions assistants by smartphone. J Environ Chem Eng. 2023;4:109863. https://doi.org/10.1016/j.jece.2023.109863.

    Article  CAS  Google Scholar 

  21. Huang XL, Song JB, Yung BC, Huang XH, Xiong YH, Chen X. Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem Soc Rev. 2018;47:2873–920. https://doi.org/10.1039/c7cs00612h.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li L, Shi LH, Jia J, Eltayeb O, Lu WJ, Tang YH, Dong C, Shuang SM. Dual photoluminescence emission carbon dots for ratiometric fluorescent GSH sensing and cancer cell recognition. ACS Appl Mater Interfaces. 2020;12:18250–7. https://doi.org/10.1021/acsami.0c00283.

    Article  CAS  PubMed  Google Scholar 

  23. Bigdeli A, Ghasemi F, Abbasi-Moayed S, Shahrajabian M, Fahimi-Kashani N, Jafarinejad S, Farahmand Nejad MA, Hormozi-Nezhad MR. Ratiometric fluorescent nanoprobes for visual detection: design principles and recent advances - a review. Anal Chim Acta. 2019;1079:30–58. https://doi.org/10.1016/j.aca.2019.06.035.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang C, Liu ML, Li TT, Liu SJ, Chen Q, Zhang J, Zhang K. One-pot hydrothermal synthesis of dual-emission fluorescent carbon dots for hypochlorous acid detection. Dyes Pigments. 2020;180:108507. https://doi.org/10.1016/j.dyepig.2020.108507.

    Article  CAS  Google Scholar 

  25. Wang HQ, Yang L, Chu SY, Liu BH, Zhang Q, Zou LL, Yu S, Jiang CL. Semiquantitative visual detection of lead ions with a smartphone via a colorimetric paper-based analytical device. Anal Chem. 2019;91:9292–9. https://doi.org/10.1021/acs.analchem.9b02297.

    Article  CAS  PubMed  Google Scholar 

  26. Wang HQ, Da LG, Yang L, Chu SY, Yang FM, Jiang YuSM, CL,. Colorimetric fluorescent paper strip with smartphone platform for quantitative detection of cadmium ions in real samples. J Hazard Mater. 2020;392:122506. https://doi.org/10.1016/j.jhazmat.2020.122506.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang WJ, Liu SG, Han L, Luo HQ, Li NB. A ratiometric fluorescent and colorimetric dual-signal sensing platform based on N-doped carbon dots for selective and sensitive detection of copper(II) and pyrophosphate ion. Sensor Actuat B-Chem. 2019;283:215–21. https://doi.org/10.1016/j.snb.2018.12.012.

    Article  CAS  Google Scholar 

  28. Liu YL, Su LY, Wang S, Guo ZY, Hu YF. A ratiometric fluorescence sensor based on carbon quantum dots realized the quantitative and visual detection of Hg2+. Luminescence. 2022;37:220–9. https://doi.org/10.1002/bio.4163.

    Article  CAS  PubMed  Google Scholar 

  29. Wang C, Hu TT, Thomas TN, Song SL, Wen ZQ, Wang CX, Song QJ, Yang MH. Surface state-controlled C-dot/C-dot based dual-emission fluorescent nanothermometers for intra-cellular thermometry. Nanoscale. 2018;10:21809–17. https://doi.org/10.1039/c8nr07445c.

    Article  CAS  PubMed  Google Scholar 

  30. Huang GL, Luo XL, Lin WM, Tang WZ, Yue TL, Wang JL, Li ZH. Carbon dots based multicolor fluorescence sensor for ratiometric and colorimetric dual-model detection of Cu2+. Dyes Pigments. 2022;203:110381. https://doi.org/10.1016/j.dyepig.2022.110381.

    Article  CAS  Google Scholar 

  31. Wang YH, Zhang C, Chen XC, Yang B, Yang L, Jiang CL, Zhang ZP. Ratiometric fluorescent paper sensor utilizing hybrid carbon dots-quantum dots for the visual determination of copper ions. Nanoscale. 2016;8:5977–84. https://doi.org/10.1039/C6NR00430J.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang HQ, Li YF, Lu HX, Gan F. A ratiometric fluorescence and colorimetric dual-mode sensing platform based on sulfur quantum dots and carbon quantum dots for selective detection of Cu2+. Anal Bioanal Chem. 2022;414:2471–80. https://doi.org/10.1007/s00216-022-03888-w.

    Article  CAS  PubMed  Google Scholar 

  33. Yu LY, Zhang LY, Ren GJ, Li S, Zhu BY, Chai F, Qu FY, Wang CG, Su ZM. Multicolorful fluorescent-nanoprobe composed of Au nanocluster and carbon dots for colorimetric and fluorescent sensing Hg2+ and Cr6+. Sensor Actuat B-Chem. 2018;262:678–86. https://doi.org/10.1016/j.snb.2018.01.192.

    Article  CAS  Google Scholar 

  34. Zhang YH, Zhou K, Qiu Y, Xia L, Xia ZN, Zhang KL, Fu QF. Strongly emissive formamide-derived N-doped carbon dots embedded Eu(III)-based metal-organic frameworks as a ratiometric fluorescent probe for ultrasensitive and visual quantitative detection of Ag+. Sensor Actuat B-Chem. 2021;339:129922. https://doi.org/10.1016/j.snb.2021.129922.

    Article  CAS  Google Scholar 

  35. Hao J, Liu FF, Liu N, Zeng ML, Song YH, Wang L. Ratiometric fluorescent detection of Cu2+ with carbon dots chelated Eu-based metal-organic frameworks. Sensor Actuat B-Chem. 2017;245:641–7. https://doi.org/10.1016/j.snb.2017.02.029.

    Article  CAS  Google Scholar 

  36. Song W, Duan WX, Liu YH, Ye ZJ, Chen YL, Chen HL, Qi SD, Wu J, Liu D, Xiao LH, Ren CL, Chen XG. Ratiometric detection of intracellular lysine and pH with one-pot synthesized dual emissive carbon dots. Anal Chem. 2017;89:13626–33. https://doi.org/10.1021/acs.analchem.7b04211.

    Article  CAS  PubMed  Google Scholar 

  37. Wang YF, Wu ML, Yu SM, Jiang CL. Semi-quantitative and visual assay of copper ions by fluorescent test paper constructed with dual-emission carbon dots. RSC Adv. 2018;8:12708–13. https://doi.org/10.1039/c8ra00917a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li HX, Su DD, Gao H, Yan YM, Kong DS, Jin R, Liu XM, Wang CG, Lu GY. Design of red emissive carbon dots: robust performance for analytical applications in pesticide monitoring. Anal Chem. 2020;92:3198–205. https://doi.org/10.1021/acs.analchem.9b04917.

    Article  CAS  PubMed  Google Scholar 

  39. Qu SN, Zhou D, Li D, Ji WY, Jing PT, Han D, Liu L, Zeng HB, Shen DZ. Toward efficient orange emissive carbon nanodots through conjugated sp2-domain controlling and surface charges engineering. Adv Mater. 2016;28:3516–21. https://doi.org/10.1002/adma.201504891.

    Article  CAS  PubMed  Google Scholar 

  40. Zu FL, Yan FY, Bai ZJ, Xu JX, Wang YY, Huang YC, Zhou XG. The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta. 2017;184:1899–914. https://doi.org/10.1007/s00604-017-2318-9.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 21804117), the Key Scientific and Technological Project of Henan Province (232102310151), the Youth Fund Project of Xinyang Normal University (2022-QN-039), and the Nanhu Scholars Program for Young Scholars of Xinyang Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengyuan He.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 950 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, M., Zheng, B., Wei, Y. et al. Portable smartphone-assisted ratiometric fluorescent test paper based on one-pot synthesized dual emissive carbon dots for visualization and quantification of mercury ions. Anal Bioanal Chem 415, 5769–5779 (2023). https://doi.org/10.1007/s00216-023-04858-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04858-6

Keywords

Navigation