Skip to main content
Log in

In situ droplet-based on-tissue chemical derivatization for lipid isomer characterization using LESA

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, we present an in situ droplet-based derivatization method for fast tissue lipid profiling at multiple isomer levels. On-tissue derivatization for isomer characterization was achieved in a droplet delivered by the TriVersa NanoMate LESA pipette. The derivatized lipids were then extracted and analyzed by the automated chip-based liquid extraction surface analysis (LESA) mass spectrometry (MS) followed by tandem MS to produce diagnostic fragment ions to reveal the lipid isomer structures. Three reactions, i.e., mCPBA epoxidation, photocycloaddition catalyzed by the photocatalyst Ir[dF(CF3)ppy]2(dtbbpy)PF6, and Mn(II) lipid adduction, were applied using the droplet-based derivatization to provide lipid characterization at carbon–carbon double-bond positional isomer and sn-positional isomer levels. Relative quantitation of both types of lipid isomers was also achieved based on diagnostic ion intensities. This method provides the flexibility of performing multiple derivatizations at different spots in the same functional region of an organ for orthogonal lipid isomer analysis using a single tissue slide. Lipid isomers were profiled in the cortex, cerebellum, thalamus, hippocampus, and midbrain of the mouse brain and 24 double-bond positional isomers and 16 sn-positional isomers showed various distributions in those regions. This droplet-based derivatization of tissue lipids allows fast profiling of multi-level isomer identification and quantitation and has great potential in tissue lipid studies requiring rapid sample-to-result turnovers.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Harayama T, Riezman H. Understanding the diversity of membrane lipid composition. Nat Rev Mol Cell Biol. 2018;19:281–96. https://doi.org/10.1038/nrm.2017.138.

    Article  CAS  PubMed  Google Scholar 

  2. van Meer G. Cellular lipidomics. EMBO J. 2005;24:3159–65. https://doi.org/10.1038/sj.emboj.7600798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fitzner D, Bader JM, Penkert H, Bergner CG, Su M, Weil M-T, Surma MA, Mann M, Klose C, Simons M. Cell-type- and brain-region-resolved mouse brain lipidome. Cell Rep. 2020;32:108132. https://doi.org/10.1016/j.celrep.2020.108132.

    Article  CAS  PubMed  Google Scholar 

  4. Han X. Lipidomics for studying metabolism. Nat Rev Endocrinol. 2016;12:668–79. https://doi.org/10.1038/nrendo.2016.98.

    Article  CAS  PubMed  Google Scholar 

  5. Natesan V, Kim S-J. Lipid metabolism, disorders and therapeutic drugs – review. Biomol Ther. 2021;29:596–604. https://doi.org/10.4062/biomolther.2021.122.

    Article  CAS  Google Scholar 

  6. Dong J, Cai X, Zhao L, Xue X, Zou L, Zhang X, Liang X. Lysophosphatidylcholine profiling of plasma: discrimination of isomers and discovery of lung cancer biomarkers. Metabolomics. 2010;6:478–88. https://doi.org/10.1007/s11306-010-0215-x.

    Article  CAS  Google Scholar 

  7. Kyle JE, Zhang X, Weitz KK, Monroe ME, Ibrahim YM, Moore RJ, Cha J, Sun X, Lovelace ES, Wagoner J, Polyak SJ, Metz TO, Dey SK, Smith RD, Burnum-Johnson KE, Baker ES. Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry. Analyst. 2016;141:1649–59. https://doi.org/10.1039/c5an02062j.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Glish GL, Vachet RW. The basics of mass spectrometry in the twenty-first century. Nat Rev Drug Discov. 2003;2:140–50. https://doi.org/10.1038/nrd1011.

    Article  CAS  PubMed  Google Scholar 

  9. Köfeler HC, Fauland A, Rechberger GN, Trötzmüller M. Mass spectrometry based lipidomics: an overview of technological platforms. Metabolites. 2012;2:19–38. https://doi.org/10.3390/metabo2010019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ekroos K, Ejsing CS, Bahr U, Karas M, Simons K, Shevchenko A. Charting molecular composition of phosphatidylcholines by fatty acid scanning and ion trap MS3 fragmentation. J Lipid Res. 2003;44:2181–92. https://doi.org/10.1194/jlr.D300020-JLR200.

    Article  CAS  PubMed  Google Scholar 

  11. Hsu F-F, Turk J. Structural characterization of unsaturated glycerophospholipids by multiple-stage linear ion-trap mass spectrometry with electrospray ionization. J Am Soc Mass Spectrom. 2008;19:1681–91. https://doi.org/10.1016/j.jasms.2008.07.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Williams PE, Klein DR, Greer SM, Brodbelt JS. Pinpointing double bond and sn-positions in glycerophospholipids via hybrid 193 nm Ultraviolet photodissociation (UVPD) mass spectrometry. J Am Chem Soc. 2017;139:15681–90. https://doi.org/10.1021/jacs.7b06416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Claes BSR, Bowman AP, Poad BLJ, Young RSE, Heeren RMA, Blanksby SJ, Ellis SR. Mass spectrometry imaging of lipids with isomer resolution using high-pressure ozone-induced dissociation. Anal Chem. 2021;93:9826–34. https://doi.org/10.1021/acs.analchem.1c01377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pham HT, Ly T, Trevitt AJ, Mitchell TW, Blanksby SJ. Differentiation of complex lipid isomers by radical-directed dissociation mass spectrometry. Anal Chem. 2012;84:7525–32. https://doi.org/10.1021/ac301652a.

    Article  CAS  PubMed  Google Scholar 

  15. Campbell JL, Baba T. Near-complete structural characterization of phosphatidylcholines using electron impact excitation of ions from organics. Anal Chem. 2015;87:5837–45. https://doi.org/10.1021/acs.analchem.5b01460.

    Article  CAS  PubMed  Google Scholar 

  16. Harris RA, May JC, Stinson CA, Xia Y, McLean JA. Determining double bond position in lipids using online ozonolysis coupled to liquid chromatography and ion mobility-mass spectrometry. Anal Chem. 2018;90:1915–24. https://doi.org/10.1021/acs.analchem.7b04007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kwon Y, Lee S, Oh D-C, Kim S. Simple determination of double-bond positions in long-chain olefins by cross-metathesis. Angew Chem. 2011;123:8425–8. https://doi.org/10.1002/ange.201102634.

    Article  Google Scholar 

  18. Ma X, Xia Y. Pinpointing double bonds in lipids by Paternò-Büchi reactions and mass spectrometry. Angew Chem Int Ed. 2014;53:2592–6. https://doi.org/10.1002/anie.201310699.

    Article  CAS  Google Scholar 

  19. Unsihuay D, Su P, Hu H, Qiu J, Kuang S, Li Y, Sun X, Dey SK, Laskin J. Imaging and analysis of isomeric unsaturated lipids through online photochemical derivatization of carbon–carbon double bonds**. Angew Chem Int Ed. 2021;60:7559–63. https://doi.org/10.1002/anie.202016734.

    Article  CAS  Google Scholar 

  20. Feng Y, Chen B, Yu Q, Li L. Identification of double bond position isomers in unsaturated lipids by m-CPBA epoxidation and mass spectrometry fragmentation. Anal Chem. 2019;91:1791–5. https://doi.org/10.1021/acs.analchem.8b04905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kuo T-H, Chung H-H, Chang H-Y, Lin C-W, Wang M-Y, Shen T-L, Hsu C-C. Deep lipidomics and molecular imaging of unsaturated lipid isomers: a universal strategy initiated by mCPBA epoxidation. Anal Chem. 2019;91:11905–15. https://doi.org/10.1021/acs.analchem.9b02667.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang JI, Tao WA, Cooks RG. Facile determination of double bond position in unsaturated fatty acids and esters by low temperature plasma ionization mass spectrometry. Anal Chem. 2011;83:4738–44. https://doi.org/10.1021/ac1030946.

    Article  CAS  PubMed  Google Scholar 

  23. Chintalapudi K, Badu-Tawiah AK. An integrated electrocatalytic nESI-MS platform for quantification of fatty acid isomers directly from untreated biofluids. Chem Sci. 2020;11:9891–7. https://doi.org/10.1039/D0SC03403G.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen X, Tang S, Freitas D, Hirtzel E, Cheng H, Yan X. Characterization of glycerophospholipids at multiple isomer levels via Mn(II)-catalyzed epoxidation. Analyst. 2022;147:4838–44. https://doi.org/10.1039/D2AN01174C.

    Article  CAS  PubMed  Google Scholar 

  25. Tang S, Cheng H, Yan X. On-demand electrochemical epoxidation in nano-electrospray ionization mass spectrometry to locate carbon–carbon double bonds. Angew Chem Int Ed. 2020;59:209–14. https://doi.org/10.1002/anie.201911070.

    Article  CAS  Google Scholar 

  26. Tang S, Chen X, Ke Y, Wang F, Yan X. Voltage-controlled divergent cascade of electrochemical reactions for characterization of lipids at multiple isomer levels using mass spectrometry. Anal Chem. 2022;94:12750–6. https://doi.org/10.1021/acs.analchem.2c02375.

    Article  CAS  PubMed  Google Scholar 

  27. Kuo S-T, Tang S, Russell DH, Yan X. Characterization of lipid carbon–carbon double-bond isomerism via ion mobility-mass spectrometry (IMS-MS) combined with cuprous ion-induced fragmentation. Int J Mass Spectrom. 2022;479:116889. https://doi.org/10.1016/j.ijms.2022.116889.

    Article  CAS  Google Scholar 

  28. Dill AL, Ifa DR, Manicke NE, Ouyang Z, Cooks RG. Mass spectrometric imaging of lipids using desorption electrospray ionization. J Chromatogr B. 2009;877:2883–9. https://doi.org/10.1016/j.jchromb.2008.12.058.

    Article  CAS  Google Scholar 

  29. Sämfors S, Fletcher JS. Lipid diversity in cells and tissue using imaging SIMS. Annu Rev Anal Chem. 2020;13:249–71. https://doi.org/10.1146/annurev-anchem-091619-103512.

    Article  Google Scholar 

  30. Jun JH, Song Z, Liu Z, Nikolau BJ, Yeung ES, Lee YJ. High-spatial and high-mass resolution imaging of surface metabolites of Arabidopsis thaliana by laser desorption-ionization mass spectrometry using colloidal silver. Anal Chem. 2010;82:3255–65. https://doi.org/10.1021/ac902990p.

    Article  CAS  PubMed  Google Scholar 

  31. Walch A, Rauser S, Deininger S-O, Höfler H. MALDI imaging mass spectrometry for direct tissue analysis: a new frontier for molecular histology. Histochem Cell Biol. 2008;130:421–34. https://doi.org/10.1007/s00418-008-0469-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Laskin J, Heath BS, Roach PJ, Cazares L, Semmes OJ. Tissue imaging using nanospray desorption electrospray ionization mass spectrometry. Anal Chem. 2012;84:141–8. https://doi.org/10.1021/ac2021322.

    Article  CAS  PubMed  Google Scholar 

  33. M. Alberici R, H. Vendramini P, N. Eberlin M,. Easy ambient sonic-spray ionization mass spectrometry for tissue imaging. Anal Methods. 2017;9:5029–36. https://doi.org/10.1039/C7AY00858A.

    Article  Google Scholar 

  34. Buchberger AR, DeLaney K, Johnson J, Li L. Mass spectrometry imaging: a review of emerging advancements and future insights. Anal Chem. 2018;90:240–65. https://doi.org/10.1021/acs.analchem.7b04733.

    Article  CAS  PubMed  Google Scholar 

  35. Van Berkel GJ, Kertesz V, King RC. High-throughput mode liquid microjunction surface sampling probe. Anal Chem. 2009;81:7096–101. https://doi.org/10.1021/ac901098d.

    Article  CAS  PubMed  Google Scholar 

  36. Bednařík A, Bölsker S, Soltwisch J, Dreisewerd K. An on-tissue Paternò-Büchi reaction for localization of carbon–carbon double bonds in phospholipids and glycolipids by matrix-assisted laser-desorption–ionization mass-spectrometry imaging. Angew Chem Int Ed. 2018;57:12092–6. https://doi.org/10.1002/anie.201806635.

    Article  CAS  Google Scholar 

  37. Reactive matrix-assisted laser desorption/ionization mass spectrometry imaging using an intrinsically photoreactive Paternò–Büchi matrix for double-bond localization in isomeric phospholipids | J Am Chem Soc. https://doi.org/10.1021/jacs.9b05868. Accessed 3 Nov 2022

  38. Kertesz V, Van Berkel GJ. Fully automated liquid extraction-based surface sampling and ionization using a chip-based robotic nanoelectrospray platform. J Mass Spectrom. 2010;45:252–60. https://doi.org/10.1002/jms.1709.

    Article  CAS  PubMed  Google Scholar 

  39. Forsman TT, Dueñas ME, Lee YJ. On-tissue boronic acid derivatization for the analysis of vicinal diol metabolites in maize with MALDI-MS imaging. J Mass Spectrom. 2021;56:e4709. https://doi.org/10.1002/jms.4709.

    Article  CAS  PubMed  Google Scholar 

  40. O’Neill KC, Dueñas ME, Larson E, Forsman TT, Lee Y-J. Enhancing metabolite coverage for matrix-assisted laser desorption/ionization mass spectrometry imaging through multiple on-tissue chemical derivatizations. In: Lee Y-J, editor. Mass spectrometry imaging of small molecules: methods and protocols. US, New York, NY: Springer; 2022. p. 197–213.

    Chapter  Google Scholar 

  41. Liebisch G, Vizcaíno JA, Köfeler H, Trötzmüller M, Griffiths WJ, Schmitz G, Spener F, Wakelam MJO. Shorthand notation for lipid structures derived from mass spectrometry. J Lipid Res. 2013;54:1523–30. https://doi.org/10.1194/jlr.M033506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yan X, Bain RM, Cooks RG. Organic reactions in microdroplets: reaction acceleration revealed by mass spectrometry. Angew Chem Int Ed. 2016;55:12960–72. https://doi.org/10.1002/anie.201602270.

    Article  CAS  Google Scholar 

  43. Wei Z, Li Y, Cooks RG, Yan X. Accelerated reaction kinetics in microdroplets: overview and recent developments. Annu Rev Phys Chem. 2020;71:31–51. https://doi.org/10.1146/annurev-physchem-121319-110654.

    Article  CAS  PubMed  Google Scholar 

  44. Banerjee S, Gnanamani E, Yan X, Zare RN. Can all bulk-phase reactions be accelerated in microdroplets? Analyst. 2017;142:1399–402. https://doi.org/10.1039/C6AN02225A.

    Article  CAS  PubMed  Google Scholar 

  45. Yan X. Emerging microdroplet chemistry for synthesis and analysis. Int J Mass Spectrom. 2021;468:116639. https://doi.org/10.1016/j.ijms.2021.116639.

    Article  CAS  Google Scholar 

  46. Shang L, Cheng Y, Zhao Y. Emerging droplet microfluidics. Chem Rev. 2017;117:7964–8040. https://doi.org/10.1021/acs.chemrev.6b00848.

    Article  CAS  PubMed  Google Scholar 

  47. Banerjee S, Zare RN. Syntheses of isoquinoline and substituted quinolines in charged microdroplets. Angew Chem Int Ed. 2015;54:14795–9. https://doi.org/10.1002/anie.201507805.

    Article  CAS  Google Scholar 

  48. Brown HM, Fedick PW. Low-cost, automated reaction screening for energetic precursor cage compounds by a benchtop liquid handling robot and desorption electrospray ionization mass spectrometry. React Chem Eng. 2023. https://doi.org/10.1039/D2RE00254J.

    Article  Google Scholar 

  49. Rykaczewski KA, Schindler CS. Visible-light-enabled Paternò-Büchi reaction via triplet energy transfer for the synthesis of oxetanes. Org Lett. 2020;22:6516–9. https://doi.org/10.1021/acs.orglett.0c02316.

    Article  CAS  PubMed  Google Scholar 

  50. Feng G, Hao Y, Wu L, Chen S. A visible-light activated [2 + 2] cycloaddition reaction enables pinpointing carbon–carbon double bonds in lipids. Chem Sci. 2020;11:7244–51. https://doi.org/10.1039/D0SC01149E.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yousif E, Haddad R. Photodegradation and photostabilization of polymers, especially polystyrene: review. Springerplus. 2013;2:398. https://doi.org/10.1186/2193-1801-2-398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Manni MM, Tiberti ML, Pagnotta S, Barelli H, Gautier R, Antonny B. Acyl chain asymmetry and polyunsaturation of brain phospholipids facilitate membrane vesiculation without leakage. eLife. 2018;7:e34394. https://doi.org/10.7554/eLife.34394.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ho Y-P, Huang P-C, Deng K-H. Metal ion complexes in the structural analysis of phospholipids by electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom. 2003;17:114–21. https://doi.org/10.1002/rcm.880.

    Article  CAS  PubMed  Google Scholar 

  54. Yoo HJ, Håkansson K. Determination of double bond location in fatty acids by manganese adduction and electron induced dissociation. Anal Chem. 2010;82:6940–6. https://doi.org/10.1021/ac101217x.

    Article  CAS  PubMed  Google Scholar 

  55. Becher S, Esch P, Heiles S. Relative quantification of phosphatidylcholine sn-isomers using positive doubly charged lipid–metal ion complexes. Anal Chem. 2018;90:11486–94. https://doi.org/10.1021/acs.analchem.8b02731.

    Article  CAS  PubMed  Google Scholar 

  56. Paine MRL, Poad BLJ, Eijkel GB, Marshall DL, Blanksby SJ, Heeren RMA, Ellis SR. Mass spectrometry imaging with isomeric resolution enabled by ozone-induced dissociation. Angew Chem Int Ed. 2018;57:10530–4. https://doi.org/10.1002/anie.201802937.

    Article  CAS  Google Scholar 

  57. Lillja J, Lanekoff I. Quantitative determination of sn-positional phospholipid isomers in MSn using silver cationization. Anal Bioanal Chem. 2022;414:7473–82. https://doi.org/10.1007/s00216-022-04173-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the NIH NIGMS Maximizing Investigators’ Research Award R35GM143047, NIH P41GM128577, NIH/NIA 1R01AG064869, and the Welch grant A-2089 for financial supports.

All experimental procedures were approved by the Institutional Animal Care and Use Committee at Texas A&M University (IACUC 2022–0180), and all methods were performed in accordance with the relevant guideline and regulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Yan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry 2023 with guest editors Zhi-Yuan Gu, Beatriz Jurado-Sánchez, Thomas H. Linz, Leandro Wang Hantao, Nongnoot Wongkaew, and Peng Wu.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2.18 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freitas, D.P., Chen, X., Hirtzel, E.A. et al. In situ droplet-based on-tissue chemical derivatization for lipid isomer characterization using LESA. Anal Bioanal Chem 415, 4197–4208 (2023). https://doi.org/10.1007/s00216-023-04653-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04653-3

Keywords

Navigation