Skip to main content
Log in

Selective Schiff base formation via gas-phase ion/ion reactions to enable differentiation of isobaric lipids in imaging mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The separation and identification of lipids in complex mixtures are critical to deciphering their cellular functions. Failure to resolve isobaric compounds (e.g., via high mass resolution or tandem mass spectrometry) can result in incorrect identifications in mass spectrometry experiments. In imaging mass spectrometry, unresolved peaks can also result in composite images of multiple compounds, giving inaccurate depictions of molecular distributions. Gas-phase ion/ion reactions can be used to selectively react with specific chemical functional groups on a target analyte, thereby extracting it from a complex mixture and shifting its m/z value to an unobstructed region of the mass range. Herein, we use selective Schiff base formation via a novel charge inversion ion/ion reaction to purify phosphatidylserines from other isobaric (i.e., same nominal mass) lipids and reveal their singular distributions in imaging mass spectrometry. The selective Schiff base formation between singly deprotonated phosphatidylserine (PS) lipid anions and doubly charged N,N,N′,N′-tetramethyl-N,N′-bis(6-oxohexyl)hexane-1,6-diaminium (TMODA) cations is performed using a modified commercial dual source hybrid Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. This process is demonstrated using the isobaric lipids [PS 40:6 - H] (m/z 834.528) and [SHexCer d38:1 - H] (m/z 834.576), which produces [PS 40:6 + TMODA - H - H2O]+ (m/z 1186.879), and [SHexCer d38:1 + TMODA - H]+ (m/z 1204.938) product ions following the gas-phase charge inversion reaction. These product ions differ by roughly 18 Da in mass and are easily separated by low mass resolution analysis, while the isobaric precursor ions require roughly 45,000 mass resolving power (full-width at half maximum) to separate. Imaging mass spectrometry using targeted gas-phase ion/ion reactions shows distinct spatial distributions for the separated lipid product ions relative to the composite images of the unseparated precursor ions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. de Rijke E, Out P, Niessen WM, Ariese F, Gooijer C, Udo AT. Analytical separation and detection methods for flavonoids. J Chromatogr A. 2006;1112(1–2):31–63.

    PubMed  Google Scholar 

  2. McLafferty FW, Fridriksson EK, Horn DM, Lewis MA, Zubarev RA. Biomolecule mass spectrometry. Science. 1999;284(5418):1289–1289.

    CAS  PubMed  Google Scholar 

  3. Fenn LS, McLean JA. Biomolecular structural separations by ion mobility–mass spectrometry. Anal Bioanal Chem. 2008;391(3):905–9.

    CAS  PubMed  Google Scholar 

  4. Tomer KB. Separations combined with mass spectrometry. Chem Rev. 2001;101(2):297–328.

    CAS  PubMed  Google Scholar 

  5. Bowman AP, Blakney GT, Hendrickson CL, Ellis SR, Heeren RM, Smith DF. Ultra-high mass resolving power, mass accuracy, and dynamic range MALDI mass spectrometry imaging by 21-T FT-ICR MS. Anal Chem. 2020;92(4):3133–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. McDonnell LA, Heeren RM. Imaging mass spectrometry. Mass Spectrom Rev. 2007;26(4):606–43.

    CAS  PubMed  Google Scholar 

  7. Norris JL, Caprioli RM. Imaging mass spectrometry: a new tool for pathology in a molecular age. PROTEOMICS Clin Appl 2013;7(11–12):733–738

  8. Wu C, Dill AL, Eberlin LS, Cooks RG, Ifa DR. Mass spectrometry imaging under ambient conditions. Mass Spectrom Rev. 2013;32(3):218–43.

    CAS  PubMed  Google Scholar 

  9. Lapainis T, Rubakhin SS, Sweedler JV. Capillary electrophoresis with electrospray ionization mass spectrometric detection for single-cell metabolomics. Anal Chem. 2009;81(14):5858–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Dunayevskiy YM, Vouros P, Wintner EA, Shipps GW, Carell T, Rebek J. Application of capillary electrophoresis-electrospray ionization mass spectometry in the determination of molecular diversity. Proc Natl Acad Sci. 1996;93(12):6152–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cornett DS, Reyzer ML, Chaurand P, Caprioli RM. MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat Methods. 2007;4(10):828–33.

    CAS  PubMed  Google Scholar 

  12. Cornett DS, Frappier SL, Caprioli RM. MALDI-FTICR imaging mass spectrometry of drugs and metabolites in tissue. Anal Chem. 2008;80(14):5648–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Prentice BM, Caprioli RM. The need for speed in matrix-assisted laser desorption/ionization imaging mass spectrometry. J Postdoc Res. 2016;4(3):3–13.

    Google Scholar 

  14. McLean JA, Ridenour WB, Caprioli RM. Profiling and imaging of tissues by imaging ion mobility-mass spectrometry. J Mass Spectrom. 2007;42(8):1099–105.

    CAS  PubMed  Google Scholar 

  15. Stauber J, MacAleese L, Franck J, Claude E, Snel M, Kaletas BK, Wiel IM, Wisztorski M, Fournier I, Heeren RM. On-tissue protein identification and imaging by MALDI-ion mobility mass spectrometry. J Am Soc Mass Spectrom. 2010;21(3):338–47.

    CAS  PubMed  Google Scholar 

  16. Xu L, Kliman M, Forsythe JG, Korade Z, Hmelo AB, Porter NA, McLean JA. Profiling and imaging ion mobility-mass spectrometry analysis of cholesterol and 7-dehydrocholesterol in cells via sputtered silver MALDI. J Am Soc Mass Spectrom. 2015;26(6):924–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Spraggins JM, Djambazova KV, Rivera ES, Migas LG, Neumann EK, Fuetterer A, Suetering J, Goedecke N, Ly A, Van de Plas R. High-performance molecular imaging with MALDI trapped ion-mobility time-of-flight (timsTOF) mass spectrometry. Anal Chem. 2019;91(22):14552–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Spector AA, Yorek MA. Membrane lipid composition and cellular function. J Lipid Res. 1985;26(9):1015–35.

    CAS  PubMed  Google Scholar 

  19. Wymann MP, Schneiter R. Lipid signalling in disease. Nat Rev Mol Cell Biol. 2008;9(2):162–76.

    CAS  PubMed  Google Scholar 

  20. Nagle JF, Tristram-Nagle S. Structure of lipid bilayers. Biochim Biophys Acta (BBA)-Rev Biomembr 2000;1469 (3):159–195

  21. Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH, Murphy RC, Raetz CR, Russell DW, Seyama Y, Shaw W. A comprehensive classification system for lipids1. J Lipid Res. 2005;46(5):839–61.

    CAS  PubMed  Google Scholar 

  22. Liebisch G, Vizcaíno JA, Köfeler H, Trötzmüller M, Griffiths WJ, Schmitz G, Spener F, Wakelam MJ. Shorthand notation for lipid structures derived from mass spectrometry. J Lipid Res. 2013;54(6):1523–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Pauling JK, Hermansson M, Hartler J, Christiansen K, Gallego SF, Peng B, Ahrends R, Ejsing CS. Proposal for a common nomenclature for fragment ions in mass spectra of lipids. PLoS ONE. 2017;12(11): e0188394.

    PubMed  PubMed Central  Google Scholar 

  24. Sud M, Fahy E, Cotter D, Brown A, Dennis EA, Glass CK, Merrill Jr AH, Murphy RC, Raetz CR, Russell DW. Lmsd: Lipid maps structure database. Nucleic Acids Res 2007;35(suppl_1):D527-D532.

  25. Zemski Berry KA, Hankin JA, Barkley RM, Spraggins JM, Caprioli RM, Murphy RC. MALDI imaging of lipid biochemistry in tissues by mass spectrometry. Chem Rev. 2011;111(10):6491–512.

    CAS  Google Scholar 

  26. Uhlen M, Ponten F. Antibody-based proteomics for human tissue profiling. Mol Cell Proteomics. 2005;4(4):384–93.

    CAS  PubMed  Google Scholar 

  27. Jain A, Liu R, Ramani B, Arauz E, Ishitsuka Y, Ragunathan K, Park J, Chen J, Xiang YK, Ha T. Probing cellular protein complexes using single-molecule pull-down. Nature. 2011;473(7348):484–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P, Sefah K, Yang CJ, Tan W. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci. 2006;103(32):11838–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Tan W, Donovan MJ, Jiang J. Aptamers from cell-based selection for bioanalytical applications. Chem Rev. 2013;113(4):2842–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Halket JM, Waterman D, Przyborowska AM, Patel RK, Fraser PD, Bramley PM. Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J Exp Bot. 2005;56(410):219–43.

    CAS  PubMed  Google Scholar 

  31. Drozd J. Chemical derivatization in gas chromatography. J Chromatogr A. 1975;113(3):303–56.

    CAS  Google Scholar 

  32. Prentice BM, Gilbert JD, Stutzman JR, Forrest WP, McLuckey SA. Gas-phase reactivity of carboxylic acid functional groups with carbodiimides. J Am Soc Mass Spectrom. 2013;24(1):30–7.

    CAS  PubMed  Google Scholar 

  33. Prentice BM, McLuckey SA. Gas-phase ion/ion reactions of peptides and proteins: acid/base, redox, and covalent chemistries. Chem Commun. 2013;49(10):947–65.

    CAS  Google Scholar 

  34. Prentice BM, McGee WM, Stutzman JR, McLuckey SA. Strategies for the gas phase modification of cationized arginine via ion/ion reactions. Int J Mass spectrom. 2013;354:211–8.

    Google Scholar 

  35. Gilbert JD, Prentice BM, McLuckey SA. Ion/ion reactions with “Onium” reagents: an approach for the gas-phase transfer of organic cations to multiply-charged anions. J Am Soc Mass Spectrom. 2015;26(5):818–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Han H, McLuckey SA. Selective covalent bond formation in polypeptide ions via gas-phase ion/ion reaction chemistry. J Am Chem Soc. 2009;131(36):12884–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Reid GE, Shang H, Hogan JM, Lee GU, McLuckey SA. Gas-phase concentration, purification, and identification of whole proteins from complex mixtures. J Am Chem Soc. 2002;124(25):7353–62.

    CAS  PubMed  Google Scholar 

  38. Prentice BM, Stutzman JR, McLuckey SA. Reagent cluster anions for multiple gas-phase covalent modifications of peptide and protein cations. J Am Soc Mass Spectrom. 2013;24:1045–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Stutzman JR, Hassell KM, McLuckey SA. Dissociation behavior of tryptic and intramolecular disulfide-linked peptide ions modified in the gas phase via ion/ion reactions. Int J Mass spectrom. 2012;312:195–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hassell KM, Stutzman JR, McLuckey SA. Gas-phase bioconjugation of peptides via ion/ion charge inversion: Schiff base formation on the conversion of cations to anions. Anal Chem. 2010;82(5):1594–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hassell KM, LeBlanc YC, McLuckey SA. Chemical noise reduction via mass spectrometry and ion/ion charge inversion: amino acids. Anal Chem. 2011;83(9):3252–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Specker JT, Orden SLV, Ridgeway ME, Prentice BM. Identification of phosphatidylcholine isomers in imaging mass spectrometry using gas-phase charge inversion ion/ion reactions. Anal Chem. 2020;92:13192–201.

    CAS  PubMed  Google Scholar 

  43. Bonney JR, Prentice BM. Perspective on emerging mass spectrometry technologies for comprehensive lipid structural elucidation. Analytical Chemistry. 2021;93(16):6311–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Rosenzweig HS, Rakhmanova VA, MacDonald RC. Diquaternary ammonium compounds as transfection agents. Bioconjug Chem. 2001;12(2):258–63.

    CAS  PubMed  Google Scholar 

  45. Kaplan DA, Hartmer R, Speir JP, Stoermer C, Gumerov D, Easterling ML, Brekenfeld A, Kim T, Laukien F, Park MA. Electron transfer dissociation in the hexapole collision cell of a hybrid quadrupole‐hexapole Fourier transform ion cyclotron resonance mass spectrometer. Rapid Communications in Mass Spectrometry: An International Journal Devoted to the Rapid Dissemination of Up‐to‐the‐Minute Research in Mass Spectrometry 2008;22(3):271-278.

  46. Specker JT, Van Orden SL, Ridgeway ME, Prentice BM. Identification of Phosphatidylcholine isomers in imaging mass spectrometry using gas-phase charge inversion ion/ion reactions. Anal Chem. 2020;92(19):13192–201.

    CAS  PubMed  Google Scholar 

  47. Hankin JA, Barkley RM, Murphy RC. Sublimation as a method of matrix application for mass spectrometric imaging. J Am Soc Mass Spectrom. 2007;18(9):1646–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Thomas Al, Charbonneau JL, Fournaise E, Chaurand P. Sublimation of new matrix candidates for high spatial resolution imaging mass spectrometry of lipids: enhanced information in both positive and negative polarities after 1, 5-diaminonapthalene deposition. Anal Chem 2012;84(4):2048–2054.

  49. Stadelmann-Ingrand S, Pontcharraud R, Fauconneau B. Evidence for the reactivity of fatty aldehydes released from oxidized plasmalogens with phosphatidylethanolamine to form Schiff base adducts in rat brain homogenates. Chem Phys Lipid. 2004;131(1):93–105.

    CAS  Google Scholar 

  50. Kenney WC. Formation of Schiff base adduct between acetaldehyde and rat liver microsomal phosphatidylethanolamine. Alcohol Clin Exp Res 1984;8(6):551–555.

  51. Plack P, Pritchard D. Schiff bases formed from retinal and phosphatidylethanolamine, phosphatidylserine, ethanolamine or serine. Biochem J. 1969;115(5):927–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. McGee WM, Mentinova M, McLuckey SA. Gas-phase conjugation to arginine residues in polypeptide ions via N-hydroxysuccinimide ester-based reagent ions. J Am Chem Soc. 2012;134(28):11412–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Bu J, Fisher CM, Gilbert JD, Prentice BM, McLuckey SA. Selective covalent chemistry via gas-phase ion/ion reactions: an exploration of the energy surfaces associated with N-hydroxysuccinimide ester reagents and primary amines and guanidine groups. J Am Soc Mass Spectrom. 2016;27(6):1089–98.

    CAS  PubMed  Google Scholar 

  54. Goeringer DE, McCluckey SA. Kinetics of collision-induced dissociation in the Paul trap: a first-order model. Rapid Commun Mass Spectrom. 1996;10(3):328–34.

    CAS  Google Scholar 

  55. Prentice BM, Ryan DJ, Grove KJ, Cornett DS, Caprioli RM, Spraggins JM. Dynamic range expansion by gas-phase ion fractionation and enrichment for imaging mass spectrometry. Anal Chem. 2020;92(19):13092–100.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Institutes of Health (NIH) under award R01 GM138660 (National Institute of General Medical Sciences [NIGMS]) and a Young Investigator Award from Eli Lilly and Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boone M. Prentice.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry 2023 with guest editors Zhi-Yuan Gu, Beatriz Jurado-Sánchez, Thomas H. Linz, Leandro Wang Hantao, Nongnoot Wongkaew, and Peng Wu.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1190 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diao, X., Ellin, N.R. & Prentice, B.M. Selective Schiff base formation via gas-phase ion/ion reactions to enable differentiation of isobaric lipids in imaging mass spectrometry. Anal Bioanal Chem 415, 4319–4331 (2023). https://doi.org/10.1007/s00216-023-04523-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04523-y

Keywords

Navigation