Skip to main content
Log in

Detection of mercury(II) and glutathione using a carbon dots-based “off-on” fluorescent sensor and the construction of a logic gate

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we proposed an efficient method for mercury(II) and glutathione detection using a fluorescent nanoprobe as a sensor. Carbon dots were synthesized from polyethyleneimine and ammonium citrate via a one-step hydrothermal method. The fluorescence of carbon dots was quenched since electron transfer occurred due to the interaction between mercury(II) and functional groups on the surface of carbon dots. Adding glutathione to the carbon dots-mercury(II) system, the fluorescence was recovered due to the stronger binding ability of glutathione to mercury(II). Based on the above-mentioned principle, this “off-on” fluorescent sensor can easily achieve the detection of mercury(II) and glutathione, which provided limits of detection of 22.45 nM and 61.89 nM, respectively. In this paper, the proposed method has been applied to detect mercury(II) and glutathione in real lake water and serum, respectively, and a logic gate for sensing glutathione was presented. The developed “off-on” fluorescent sensor with high sensitivity and selectivity has shown great potential for mercury(II) and glutathione detection in environmental and biosensing fields.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Koutsogiannis P, Thomou E, Stamatis H, Gournis D, Rudolf P. Advances in fluorescent carbon dots for biomedical applications. Advances in Physics: X. 2020;5(1):1758592.

    CAS  Google Scholar 

  2. Jiang H, Wang X-M. Progress of metal nanoclusters-based electrochemiluminescent analysis. Chinese Journal of Analytical Chemistry. 2017;45(12):1776–85.

    Article  Google Scholar 

  3. Li H, Chang J, Gai P, Li F. Label-free and ultrasensitive biomolecule detection based on aggregation induced emission fluorogen via target-triggered Hemin/G-quadruplex-catalyzed oxidation reaction. ACS Applied Materials & Interfaces. 2018;10(5):4561–8.

    Article  Google Scholar 

  4. Lv W, Yang Q, Li Q, Li H, Li F. Quaternary ammonium salt-functionalized tetraphenylethene derivative boosts electrochemiluminescence for highly sensitive aqueous-phase biosensing. Analytical Chemistry. 2020;92(17):11747–54.

    Article  CAS  PubMed  Google Scholar 

  5. Lv W, Wang X, Wu J, Li H, Li F. pH and H2O2 dual-responsive carbon dots for biocatalytic transformation monitoring. Chinese Chemical Letters. 2019;30(9):1635–8.

    Article  CAS  Google Scholar 

  6. Zheng Y, Wu J, Jiang H, Wang X. Gold nanoclusters for theranostic applications. Coordination Chemistry Reviews. 2021;431:213689.

    Article  CAS  Google Scholar 

  7. Boakye-Yiadom KO, Kesse S, Opoku-Damoah Y, Filli MS, Aquib M, Joelle MMB, et al. Carbon dots: applications in bioimaging and theranostics. International Journal of Pharmaceutics. 2019;564:308–17.

    Article  CAS  PubMed  Google Scholar 

  8. Chen L, Cheng Z, Luo M, Wang T, Zhang L, Wei J, et al. Fluorescent noble metal nanoclusters for contaminants analysis in food matrix. Critical Reviews in Food Science and Nutrition. 2021;1-19

  9. Jiang Z, Guan L, Xu X, Wang E, Wang C. Applications of carbon dots in electrochemical energy storage. ACS Applied Electronic Materials. 2022;4(11):5144–64.

    Article  CAS  Google Scholar 

  10. Han M, Zhu S, Lu S, Song Y, Feng T, Tao S, et al. Recent progress on the photocatalysis of carbon dots: classification, mechanism and applications. Nano Today. 2018;19:201–18.

    Article  CAS  Google Scholar 

  11. Lu S, Wu D, Li G, Lv Z, Chen Z, Chen L, et al. Carbon dots-based ratiometric nanosensor for highly sensitive and selective detection of mercury(II) ions and glutathione. RSC Advances. 2016;6(105):103169–77.

    Article  CAS  Google Scholar 

  12. Lin VS, Chen W, Xian M, Chang CJ. Chemical probes for molecular imaging and detection of hydrogen sulfide and reactive sulfur species in biological systems. Chem Soc Rev. 2015;44(14):4596–618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yin J, Kwon Y, Kim D, Lee D, Kim G, Hu Y, et al. Cyanine-based fluorescent probe for highly selective detection of glutathione in cell cultures and live mouse tissues. J Am Chem Soc. 2014;136(14):5351–8.

    Article  CAS  PubMed  Google Scholar 

  14. Ju J, Zhang R, He S, Chen W. Nitrogen-doped graphene quantum dots-based fluorescent probe for the sensitive turn-on detection of glutathione and its cellular imaging. RSC Adv. 2014;4(94):52583–9.

    Article  CAS  Google Scholar 

  15. Liu S, Shi F, Chen L, Su X. Tyrosine-functionalized CuInS2 quantum dots as a fluorescence probe for the determination of biothiols, histidine and threonine. Analyst. 2013;138(19):5819–25.

    Article  CAS  PubMed  Google Scholar 

  16. Ning G, Li B, Liu J, Xiao Q, Huang S. Red-emission carbon dots as fluorescent “on–off–on” probe for highly sensitive and selective detection of Cu2+ and glutathione. Analytical and Bioanalytical Chemistry. 2022;414(6):2219–33.

    Article  CAS  PubMed  Google Scholar 

  17. Lqbal A, Lqbal K, Xu LG, Li B, Gong DY, Liu XY, et al. Heterogeneous synthesis of nitrogen-doped carbon dots prepared via anhydrous citric acid and melamine for selective and sensitive turn on-off-on detection of Hg (II), glutathione and its cellular imaging. Sensors and Actuators B-Chemical. 2018;255:1130–8.

    Article  Google Scholar 

  18. Sun XN, Heinrich P, Berger RS, Oefner PJ, Dettmer K. Quantification and C-13-tracer analysis of total reduced glutathione by HPLC-QTOFMS/MS. Analytica Chimica Acta. 2019;1080:127–37.

    Article  CAS  PubMed  Google Scholar 

  19. Squellerio I, Caruso D, Porro B, Veglia F, Tremoli E, Cavalca V. Direct glutathione quantification in human blood by LC-MS/MS: comparison with HPLC with electrochemical detection. Journal of Pharmaceutical and Biomedical Analysis. 2012;71:111–8.

    Article  CAS  PubMed  Google Scholar 

  20. Muthirulan P, Velmurugan R. Direct electrochemistry and electrocatalysis of reduced glutathione on CNFs-PDDA/PB nanocomposite film modified ITO electrode for biosensors. Colloids and Surfaces B-Biointerfaces. 2011;83(2):347–54.

    Article  CAS  PubMed  Google Scholar 

  21. Xie JW, Cheng D, Li PP, Xu ZJ, Zhu XH, Zhang YY, et al. Au/metal-organic framework nanocapsules for electrochemical determination of glutathione. Acs Applied Nano Materials. 2021;4(5):4853–62.

    Article  CAS  Google Scholar 

  22. Huang MY, Wang YZ, Song ML, Chen FN. Bovine serum albumin-encapsulated gold nanoclusters-Cu2+ synergize and promote calcein chemiluminescence for glutathione detection in human whole blood. Microchemical Journal. 2021;170

  23. Yang CL, Deng WP, Liu HY, Ge SG, Yan M. Turn-on fluorescence sensor for glutathione in aqueous solutions using carbon dots-MnO2 nanocomposites. Sensors and Actuators B-Chemical. 2015;216:286–92.

    Article  CAS  Google Scholar 

  24. Zhao J, Gong JW, Wei JN, Yang Q, Li GJ, Tong YP, et al. Metal organic framework loaded fluorescent nitrogen-doped carbon nanozyme with light regulating redox ability for detection of ferric ion and glutathione. Journal of Colloid and Interface Science. 2022;618:11–21.

    Article  CAS  PubMed  Google Scholar 

  25. Cai L, Fu Z, Cui F. Synthesis of carbon dots and their application as turn off-on fluorescent sensor for mercury (II) and glutathione. J Fluoresc. 2020;30(1):11–20.

    Article  CAS  PubMed  Google Scholar 

  26. Hu AQ, Chen GQ, Yang TQ, Ma CQ, Li L, Gao H, et al. A fluorescent probe based on FRET effect between carbon nanodots and gold nanoparticles for sensitive detection of thiourea. Spectrochimica Acta Part a-Molecular and Biomolecular. Spectroscopy. 2022:281.

  27. Luo D, Liu SG, Li NB, Luo HQ. Water-soluble polymer dots formed from polyethylenimine and glutathione as a fluorescent probe for mercury(II). Mikrochim Acta. 2018;185(6):284.

    Article  PubMed  Google Scholar 

  28. Wang T, Chen G, Li L, Wu Y. Highly fluorescent green carbon dots as a fluorescent probe for detecting mineral water pH. Sensors (Basel). 2019;19(17):3801.

  29. Purbia R, Paria S. A simple turn on fluorescent sensor for the selective detection of thiamine using coconut water derived luminescent carbon dots. Biosensors and Bioelectronics. 2016;79:467–75.

    Article  CAS  PubMed  Google Scholar 

  30. Fu H, Ji Z, Chen X, Cheng A, Liu S, Gong P, et al. A versatile ratiometric nanosensing approach for sensitive and accurate detection of Hg2+ and biological thiols based on new fluorescent carbon quantum dots. Analytical and Bioanalytical Chemistry. 2017;409(9):2373–82.

    Article  CAS  PubMed  Google Scholar 

  31. Gao G, Jiang Y-W, Jia H-R, Yang J, Wu F-G. On-off-on fluorescent nanosensor for Fe3+ detection and cancer/normal cell differentiation via silicon-doped carbon quantum dots. Carbon. 2018;134:232–43.

    Article  CAS  Google Scholar 

  32. Kundu A, Lee J, Park B, Ray C, Sankar KV, Kim WS, et al. Facile approach to synthesize highly fluorescent multicolor emissive carbon dots via surface functionalization for cellular imaging. Journal of Colloid and Interface Science. 2018;513:505–14.

    Article  CAS  PubMed  Google Scholar 

  33. Xue Q, Huang H, Wang L, Chen Z, Wu M, Li Z, et al. Nearly monodisperse graphene quantum dots fabricated by amine-assisted cutting and ultrafiltration. Nanoscale. 2013;5(24):12098–103.

    Article  CAS  PubMed  Google Scholar 

  34. Lan MH, Zhang JF, Chui YS, Wang H, Yang QD, Zhu XY, et al. A recyclable carbon nanoparticle-based fluorescent probe for highly selective and sensitive detection of mercapto biomolecules. Journal of Materials Chemistry B. 2015;3(1):127–34.

    Article  CAS  PubMed  Google Scholar 

  35. Li L, Wang X, Fu Z, Cui F. One-step hydrothermal synthesis of nitrogen- and sulfur-co-doped carbon dots from ginkgo leaves and application in biology. Materials Letters. 2017;196:300–3.

    Article  CAS  Google Scholar 

  36. Zhang H, You J, Wang J, Dong X, Guan R, Cao D. Highly luminescent carbon dots as temperature sensors and “off-on” sensing of Hg2+ and biothiols. Dyes and Pigments. 2020;173

  37. Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, et al. The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchimica Acta. 2017;184(7):1899–914.

    Article  CAS  Google Scholar 

  38. Rani BK, John SA. Fluorogenic mercury ion sensor based on pyrene-amino mercapto thiadiazole unit. Journal of Hazardous Materials. 2018;343:98–106.

    Article  CAS  PubMed  Google Scholar 

  39. Zhou L, Lin Y, Huang Z, Ren J, Qu X. Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg2+ and biothiols in complex matrices. Chem Commun (Camb). 2012;48(8):1147–9.

    Article  CAS  PubMed  Google Scholar 

  40. Mondal TK, Ghorai UK, Saha SK. Dual-emissive carbon quantum dot-Tb nanocomposite as a fluorescent indicator for a highly selective visual detection of Hg(II) in water. ACS Omega. 2018;3(9):11439–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cai QY, Li J, Ge J, Zhang L, Hu YL, Li ZH, et al. A rapid fluorescence “switch-on” assay for glutathione detection by using carbon dots-MnO2 nanocomposites. Biosensors & Bioelectronics. 2015;72:31–6.

    Article  CAS  Google Scholar 

  42. Jia P, Hou J, Yang K, Wang L. On-off-on fluorescent sensor for glutathione based on bifunctional vanadium oxide quantum dots induced spontaneous formation of MnO2 nanosheets. Mikrochim Acta. 2021;188(9):299.

    Article  CAS  PubMed  Google Scholar 

  43. Yang H, He L, Long YW, Li HX, Pan S, Liu H, et al. Fluorescent carbon dots synthesized by microwave-assisted pyrolysis for chromium(VI) and ascorbic acid sensing and logic gate operation. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy. 2018;205:12–20.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang L, Qin J, Yang Q, Wei S, Yang R. Cost-effective and facile fluorescent probes for label-free recognition of chlorpromazine hydrochloride and logic gate operation. Journal of Photochemistry and Photobiology A: Chemistry. 2019;382:111918.

    Article  CAS  Google Scholar 

  45. Du F, Gong X, Lu W, Liu Y, Gao Y, Shuang S, et al. Bright-green-emissive nitrogen-doped carbon dots as a nanoprobe for bifunctional sensing, its logic gate operation and cellular imaging. Talanta. 2018;179:554–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was funded by the National Key Research and Development Program of China (2018YFC1604204-3) and the Key Research and Development Program of Jiangsu Province (No. BE2020756).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqing Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 4.30 mb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Chen, G., Hu, A. et al. Detection of mercury(II) and glutathione using a carbon dots-based “off-on” fluorescent sensor and the construction of a logic gate. Anal Bioanal Chem 415, 1397–1409 (2023). https://doi.org/10.1007/s00216-023-04517-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04517-w

Keywords

Navigation