Skip to main content
Log in

QCM sensor provides insight into the role of pivotal ions in cellular regulatory volume decrease

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

All vertebrate cells generally self-regulate for sustaining homeostasis and cell functions. As a major regulatory mechanism, regulatory volume decrease (RVD) occurs in hypotonicity-induced cell swelling, and then shrinking by the efflux of intracellular osmolytes and water, in which the ions K+, Cl, and Ca2+ play a key role in the RVD process. We observed that these pivotal ions could result in novel RVD behaviors under repeatedly hypotonic stimulation. However, there is a lack of valid means for assessing the effect of pivotal ions on RVD. In this work, we proposed an effective measurement process based on a quartz crystal microbalance (QCM) combined with cell function of RVD for revealing acute variations in cell volume regulation induced by the pivotal ions. A QCM sensor was implemented by adhering MCF-7 cells to a poly-l-lysine-modified gold chip and cyclic stimulation with hypotonic NaCl medium, in which a frequency shift (Δf) showed the superior feasibility of the technique in exhibiting RVD behaviors. With the increase in the number of cycles, the RVD values decreased progressively under three stimulation cycles with hypotonic NaCl alone. Compared with the first cycle, the RVD level in the second and third cycles declined by 60.7±1.7% and 82.1±1.6% (n=3), respectively; conversely, it recovered in NaCl-KCl solution, but was significantly enhanced by 52.2±0.8% in NaCl-CaCl2 solution. Moreover, the inhibition of chloride channels to block Cl efflux also decreased the RVD level by 56.2±3.0%. The results indicate that these ions (K+, Cl, Ca2+) are all able to affect the function of RVD, among which intracellular Cl depletion reduced RVD during measurement, but which recovered with K+ supplement, and Ca2+ enhanced RVD due to activation of ion channels. Therefore, this work provides a comprehensive assessment of cellular behavior and offers an innovative method for gaining insight into cellular functions and mechanisms.

Graphical abstract

A novel strategy was conducted by integrating a quartz crystal microbalance (QCM) with the function of cell volume regulation for analyzing the role of the pivotal ions ( K+, Cl, Ca2+) in NaCl media on the behaviors of regulatory cell volume decrease (RVD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jentsch TJ. VRACs and other ion channels and transporters in the regulation of cell volume and beyond. Nat Rev Mol Cell Biol. 2016;17(5):293–307. https://doi.org/10.1038/nrm.2016.29.

    Article  CAS  Google Scholar 

  2. Hoffmann EK, Lambert IH, Pedersen SF. Physiology of cell volume regulation in vertebrates. Phys Rev. 2009;89(1):193–277. https://doi.org/10.1152/physrev.00037.2007.

    Article  CAS  Google Scholar 

  3. Watanabe K, Umeda T, Niwa K, Naguro I, Ichijo H. A PP6-ASK3 module coordinates the bidirectional cell volume regulation under osmotic stress. Cell Rep. 2018;22(11):2809–17. https://doi.org/10.1016/j.celrep.2018.02.045.

    Article  CAS  Google Scholar 

  4. Morishita K, Watanabe K, Ichijo H. Cell volume regulation in cancer cell migration driven by osmotic water flow. Cancer Sci. 2019;110(8):2337–47. https://doi.org/10.1111/cas.14079.

    Article  CAS  Google Scholar 

  5. Mohr CJ, Steudel FA, Gross D, Ruth P, Lo W-Y, Hoppe R. Cancer-associated intermediate conductance Ca2+-activated K+ channel KCa3.1. Cancers. 2019;11(1):109. https://doi.org/10.3390/cancers11010109.

    Article  CAS  Google Scholar 

  6. Bai Z, Zhang Z, Ye Y, Wang S. Sodium butyrate induces differentiation of gastric cancer cells to intestinal cells via the PTEN/phosphoinositide 3-kinase pathway. Cell Biol Int. 2010;34(12):1141–5. https://doi.org/10.1042/CBI20090481.

    Article  CAS  Google Scholar 

  7. Zhang H, Li H, Liu E, Guang Y, Yang L, Mao J. The AQP-3 water channel and the ClC-3 chloride channel coordinate the hypotonicity-induced swelling volume in nasopharyngeal carcinoma cells. Int J Biochem Cell Biol. 2014;57:96–107. https://doi.org/10.1016/j.biocel.2014.10.014.

    Article  CAS  Google Scholar 

  8. Tymchenko N, Nilebäck E, Voinova MV, Gold J, Kasemo B, Svedhem S. Reversible changes in cell morphology due to cytoskeletal rearrangements measured in real-time by QCM-D. Biointerphases. 2012;7(1):43. https://doi.org/10.1007/s13758-012-0043-9.

    Article  CAS  Google Scholar 

  9. Zhou B, Lu X, Hao Y, Yang P. Real-time monitoring of the regulatory volume decrease of cancer cells: a model for the evaluation of cell migration. Anal Chem. 2019;91(13):8078–84. https://doi.org/10.1021/acs.analchem.9b00004.

    Article  CAS  Google Scholar 

  10. Neurohr GE, Terry RL, Lengefeld J, Bonney M, Brittingham GP, Moretto F. Excessive cell growth causes cytoplasm dilution and contributes to senescence. Cell. 2019;176(5):1083–97.e18. https://doi.org/10.1016/j.cell.2019.01.018.

    Article  CAS  Google Scholar 

  11. Awadová T, Pivoňková H, Heřmanová Z, Kirdajová D, Anděrová M, Malínský J. Cell volume changes as revealed by fluorescence microscopy: global vs local approaches. J Neurosci Methods. 2018;306:38–44. https://doi.org/10.1016/j.jneumeth.2018.05.026.

    Article  Google Scholar 

  12. Weng L, Ellett F, Edd J, Wong KHK, Uygun K, Irimia D. A highly-occupied, single-cell trapping microarray for determination of cell membrane permeability. Lab Chip. 2017;17(23):4077–88. https://doi.org/10.1039/C7LC00883J.

    Article  CAS  Google Scholar 

  13. Yang L, Zhu L, Xu Y, Zhang H, Ye W, Mao J. Uncoupling of K+ and Cl transport across the cell membrane in the process of regulatory volume decrease. Biochem Pharmacol. 2012;84(3):292–302. https://doi.org/10.1016/j.bcp.2012.05.006.

    Article  CAS  Google Scholar 

  14. Zhu L, Zuo W, Yang H, Zhang H, Luo H, Ye D. Involvement of volume-activated chloride channels in H2O2 preconditioning against oxidant-induced injury through modulating cell volume regulation mechanisms and membrane permeability in PC12 cells. Mol Neurobiol. 2013;48(1):205–16. https://doi.org/10.1007/s12035-013-8431-9.

    Article  CAS  Google Scholar 

  15. Raju R, Höhn H, Karnutsch C, Khoshmanesh K, Bryant G. Measuring volume kinetics of human monocytes in response to cryoprotectants using microfluidic technologies. Appl Phys Lett. 2019;114(22):223702. https://doi.org/10.1063/1.5096199.

    Article  CAS  Google Scholar 

  16. Madeira A, Moura TF, Soveral G. Detecting aquaporin function and regulation. Front Chem. 2016;4(3). https://doi.org/10.3389/fchem.2016.00003.

  17. Bottier C, Gabella C, Vianay B, Buscemi L, Sbalzarini IF, Meister J-J. Dynamic measurement of the height and volume of migrating cells by a novel fluorescence microscopy technique. Lab Chip. 2011;11(22):3855–63. https://doi.org/10.1039/C1LC20807A.

    Article  CAS  Google Scholar 

  18. Alexander TE, Lozeau LD, Camesano TA. QCM-D characterization of time-dependence of bacterial adhesion. Cell Surf. 2019;5:100024. https://doi.org/10.1016/j.tcsw.2019.100024.

    Article  CAS  Google Scholar 

  19. Li X, Song Q, Pei Y, Dong H, Aastrup T, Pei Z. Direct attachment of suspension cells to PDA surface and its application in suspension-cell QCM biosensor. Sensors Actuators B Chem. 2021;326:128823. https://doi.org/10.1016/j.snb.2020.128823.

    Article  CAS  Google Scholar 

  20. Noi K, Iwata A, Kato F, Ogi H. Ultrahigh-frequency, wireless MEMS QCM biosensor for direct, kabel-free detection of biomarkers in a large amount of contaminants. Anal Chem. 2019;91(15):9398–402. https://doi.org/10.1021/acs.analchem.9b01414.

    Article  Google Scholar 

  21. Wachiralurpan S, Chansiri K, Lieberzeit PA. Direct detection of listeria monocytogenes DNA amplification products with quartz crystal microbalances at elevated temperatures. Sensors Actuators B Chem. 2020;308:127678. https://doi.org/10.1016/j.snb.2020.127678.

    Article  CAS  Google Scholar 

  22. Adamczyk Z, Sadowska M. Applicability of QCM-D for quantitative measurements of nano- and microparticle deposition kinetics: theoretical modeling and experiments. Anal Chem. 2020;92(22):15087–95. https://doi.org/10.1021/acs.analchem.0c03115.

    Article  CAS  Google Scholar 

  23. Zeng M, Zhou T, Su Z. Electrochemically prepared poly(L-lysine) and 3-hydroxyphenylboronic acid composite as a conventional adhesion material for rice suspension cells. Electrochem Commun. 2020;115:106737. https://doi.org/10.1016/j.elecom.2020.106737.

    Article  CAS  Google Scholar 

  24. O’Neal JT, Dai EY, Zhang Y. QCM-D investigation of swelling behavior of layer-by-layer thin films upon exposure to monovalent ions. Langmuir. 2018;34(3):999–1009. https://doi.org/10.1021/acs.langmuir.7b02836.

    Article  CAS  Google Scholar 

  25. Chen JY, Penn LS, Xi JJB. Quartz crystal microbalance: sensing cell-substrate adhesion and beyond. Biosens Bioelectron. 2018;99:593–602. https://doi.org/10.1016/j.bios.2017.08.032.

    Article  CAS  Google Scholar 

  26. Frenette-Cotton R, Marcoux AA, Garneau AP, Noel M, Isenring PJJoCP. Phosphoregulation of K+-Cl cotransporters during cell swelling: novel insights. J Cell Physiol. 2018;233(1):396–408. https://doi.org/10.1002/jcp.25899.

    Article  CAS  Google Scholar 

  27. Yongabi D, Jooken S, Givanoudi S, Khorshid M, Deschaume O, Bartic C. Ionic strength controls long-term cell-surface interactions–A QCM-D study of S. cerevisiae adhesion, retention and detachment. J Colloid Interface Sci. 2021;585:583–95. https://doi.org/10.1016/j.jcis.2020.10.038.

    Article  CAS  Google Scholar 

  28. Chen Z, Zhou T, Hu J, Duan HJB. Quartz crystal microbalance with dissipation monitoring of dynamic viscoelastic changes of tobacco BY-2 cells under different osmotic conditions. Biosens. 2021;11(5):136. https://doi.org/10.3390/bios11050136.

    Article  CAS  Google Scholar 

  29. Zhou T, Zhou Z, Zhou S, Huang F. Real-time monitoring of contractile properties of H9C2 cardiomyoblasts by using a quartz crystal microbalance. Anal Methods. 2016;8(3):488–95. https://doi.org/10.3390/bios11050136.

    Article  CAS  Google Scholar 

  30. Stobiecka M, Jakiela S, Chalupa A, Bednarczyk P. Mitochondria–based biosensors with piezometric and RELS transduction for potassium uptake and release investigations. Biosens Bioelectron. 2017;88:114–21. https://doi.org/10.1016/j.bios.2016.07.110.

    Article  CAS  Google Scholar 

  31. Sauerbrey GJZfp. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Physik. 1959;155(2):206–22. https://doi.org/10.1007/BF01337937.

    Article  Google Scholar 

  32. Mao J, Yuan J, Wang L, Zhang H, Jin X, Zhu J. Tamoxifen inhibits migration of estrogen receptor-negative hepatocellular carcinoma cells by blocking the swelling-activated chloride current. J Cell Physiol. 2013;228(5):991–1001. https://doi.org/10.1002/jcp.24245.

    Article  CAS  Google Scholar 

  33. Ko W, Jung S-R, Kim K-W, Yeon J-H, Park C-G, Nam JH. Allosteric modulation of alternatively spliced Ca2+-activated Cl channels TMEM16A by PI(4,5)P2 and CaMKII. Proc Natl Acad Sci. 2020;117(48):30787–98. https://doi.org/10.1073/pnas.2014520117.

    Article  CAS  Google Scholar 

  34. Webster A, Vollmer F. Probing biomechanical properties with a centrifugal force quartz crystal microbalance. Nat Commun. 2014;5(1):5284. https://doi.org/10.1038/ncomms6284.

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (No. 21874057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peihui Yang.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 7926 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, P., Bao, S., Xiao, S. et al. QCM sensor provides insight into the role of pivotal ions in cellular regulatory volume decrease. Anal Bioanal Chem 415, 245–254 (2023). https://doi.org/10.1007/s00216-022-04415-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04415-7

Keywords

Navigation