Skip to main content
Log in

Comparison of originator and biosimilar monoclonal antibodies using HRMS, Fc affinity chromatography, and 2D-HPLC

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Due to the complex manufacturing process of therapeutic monoclonal antibodies, it is hardly possible to produce an identical copy of the original product (originator). Consequently, follow-on products (biosimilars) must demonstrate their efficacy being similar to the originator in terms of structure and function. During this process, a variety of analytical methods are required for this purpose. This study focuses on three particularly relevant analytical techniques: high-resolution mass spectrometry, fragment crystallisable (Fc) affinity chromatography, and two-dimensional peptide mapping. Each analytical method proved able to identify specific differences between originator and biosimilar. High-resolution mass spectrometry was used to characterize the glycan pattern. It was shown that a trastuzumab biosimilar did not have the G0:G0F sugar modification identified in the originator. The application of affinity chromatography to rituximab showed that originator and biosimilar interacted differently with the immobilized Fc receptor. Furthermore, 2D-HPLC peptide mapping demonstrated the influence of orthogonality of separation dimensions, leading to differentiation of a rituximab originator and biosimilar.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

mAbs:

Monoclonal antibodies

CHO:

Chinese hamster ovary cells

EMA:

European Medicines Agency

API:

Active pharmaceutical ingredient

HRMS:

High-resolution mass spectrometry

2D-HPLC:

Two-dimensional liquid chromatography

ADCC:

Antibody-dependent cell-mediated cytotoxicity

Fc:

Fragment crystallisable

References

  1. Grilo AL, Mantalaris A. The increasingly human and profitable monoclonal antibody market. Trends Biotechnol. 2019;37(1):9–16. https://doi.org/10.1016/j.tibtech.2018.05.014.

    Article  CAS  PubMed  Google Scholar 

  2. Beck A, Wagner-Rousset E, Ayoub D, Van Dorsselaer A, Sanglier-Cianferani S. Characterization of therapeutic antibodies and related products. Anal Chem. 2013;85(2):715–36. https://doi.org/10.1021/ac3032355.

    Article  CAS  PubMed  Google Scholar 

  3. Beck A, Sanglier-Cianferani S, Van Dorsselaer A. Biosimilar, biobetter, and next generation antibody characterization by mass spectrometry. Anal Chem. 2012;84(11):4637–46. https://doi.org/10.1021/ac3002885.

    Article  CAS  PubMed  Google Scholar 

  4. Agency EM (2012) Guideline on similar biological medicinal products containing monoclonal antibodies – non-clinical and clinical issues. London

  5. Shukla AA, Thommes J. Recent advances in large-scale production of monoclonal antibodies and related proteins. Trends Biotechnol. 2010;28(5):253–61. https://doi.org/10.1016/j.tibtech.2010.02.001.

    Article  CAS  PubMed  Google Scholar 

  6. Hossler P, Khattak SF, Li ZJ. Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology. 2009;19(9):936–49. https://doi.org/10.1093/glycob/cwp079.

    Article  CAS  PubMed  Google Scholar 

  7. Xie LQ, Zhang EH, Xu YP, Gao WY, Wang LL, Xie MHW, Qin PL, Lu LH, Li SP, Shen PC, Jiang WD, Liu S. Demonstrating analytical similarity of trastuzumab biosimilar HLX02 to Herceptin (R) with a panel of sensitive and orthogonal methods including a novel Fc gamma RIIIa affinity chromatography technology. BioDrugs. 2020;34(3):363–79. https://doi.org/10.1007/s40259-020-00407-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sandra K, Vandenheede I, Sandra P. Modern chromatographic and mass spectrometric techniques for protein biopharmaceutical characterization. J Chromatogr A. 2014;1335:81–103. https://doi.org/10.1016/j.chroma.2013.11.057.

    Article  CAS  PubMed  Google Scholar 

  9. Reinders LMH, Klassen MD, Jaeger M, Teutenberg T, Tuerk J. Development of an analytical method to assess the occupational health risk of therapeutic monoclonal antibodies using LC-HRMS. Anal Bioanal Chem. 2018;410(11):2829–36. https://doi.org/10.1007/s00216-018-0966-1.

    Article  CAS  PubMed  Google Scholar 

  10. Hesse M, Meier H, Zeeh B (2012) Spektroskopische Methoden in der organischen Chemie; 8. Edition, Georg Thieme Verlag KG, Stuttgart, ISBN 978-3-13-576108-4

  11. Chakrabarti A, Kervinen J, Müller E, Tanaka T, Muranaka K (2020) Analytical characterization of monoclonal antibodies with novel Fc receptor-based chromatography technique, monoclonal antibodies. In: Monoclonal antibodies. https://doi.org/10.5772/intechopen.95356

  12. Vanhoenacker G, Vandenheede I, David F, Sandra P, Sandra K. Comprehensive two-dimensional liquid chromatography of therapeutic monoclonal antibody digests. Anal Bioanal Chem. 2015;407(1):355–66. https://doi.org/10.1007/s00216-014-8299-1.

    Article  CAS  PubMed  Google Scholar 

  13. Semard G, Peulon-Agasse V, Bruchet A, Bouillon JP, Cardinael P. Convex hull: a new method to determine the separation space used and to optimize operating conditions for comprehensive two-dimensional gas chromatography. J Chromatogr A. 2010;1217(33):5449–54. https://doi.org/10.1016/j.chroma.2010.06.048.

    Article  CAS  PubMed  Google Scholar 

  14. Gilar M, Olivova P, Daly AE, Gebler JC. Orthogonality of separation in two-dimensional liquid chromatography. Anal Chem. 2005;77(19):6426–34. https://doi.org/10.1021/ac050923i.

    Article  CAS  PubMed  Google Scholar 

  15. Camenzuli M, Schoenmakers PJ. A new measure of orthogonality for multi-dimensional chromatography. Anal Chim Acta. 2014;838:93–101. https://doi.org/10.1016/j.aca.2014.05.048.

    Article  CAS  PubMed  Google Scholar 

  16. Leonhardt J, Teutenberg T, Buschmann G, Gassner O, Schmidt TC. A new method for the determination of peak distribution across a two-dimensional separation space for the identification of optimal column combinations. Anal Bioanal Chem. 2016;408(28):8079–88. https://doi.org/10.1007/s00216-016-9911-3.

    Article  CAS  PubMed  Google Scholar 

  17. Delobel A, Cantais F, Catrain A, Dereux E, Van Vyncht G. Therapeutic antibody glycosylation analysis: a contract research organization perspective in the frame of batch release or comparability support. Methods Mol Biol. 2013;988:115–43. https://doi.org/10.1007/978-1-62703-327-5_8.

    Article  CAS  PubMed  Google Scholar 

  18. Lee J, Kang HA, Bae JS, Kim KD, Lee KH, Lim KH, Choo MJ, Chang SJ. Evaluation of analytical similarity between trastuzumab biosimilar CT-P6 and reference product using statistical analyses. mAbs. 2018;10(4):547–71. https://doi.org/10.1080/19420862.2018.1440170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Damen CWN, Chen WB, Chakraborty AB, van Oosterhout M, Mazzeo JR, Gebler JC, Schellens JHM, Rosing H, Beijnen JH. Electrospray ionization quadrupole ion-mobility time-of-flight mass spectrometry as a tool to distinguish the lot-to-lot heterogeneity in N-glycosylation profile of the therapeutic monoclonal antibody trastuzumab. J Am Soc Mass Spectr. 2009;20(11):2021–33. https://doi.org/10.1016/j.jasms.2009.07.017.

    Article  CAS  Google Scholar 

  20. Visser J, Feuerstein I, Stangler T, Schmiederer T, Fritsch C, Schiestl M. Physicochemical and functional comparability between the proposed biosimilar rituximab GP2013 and originator rituximab. BioDrugs. 2013;27(5):495–507. https://doi.org/10.1007/s40259-013-0036-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jurczak W, Cohen S, Illidge TM, da Silva A, Amersdorffer J. Scientific rationale underpinning the development of biosimilar rituximab in hematological cancers and inflammatory diseases. Future Oncol. 2019;15(36):4223–34. https://doi.org/10.2217/fon-2019-0430.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Federal Ministry for Economic Affairs and Energy for funding the INNO-KOM project “Sensitive method for the detection of airborne proteins” (49VF170039). Furthermore, we would like to thank Tosoh Bioscience for providing materials and samples.

Author information

Authors and Affiliations

Authors

Contributions

Lars M. H. Reinders: conceptualization, methodology, validation, formal analysis, investigation, data curation, writing—original draft, writing—review and editing, visualization, project administration, funding acquisition. Martin D. Klassen: conceptualization, methodology, writing—review and editing, supervision, funding acquisition. Thorsten Teutenberg: conceptualization, writing—review and editing, supervision, funding acquisition. Martin Jaeger: writing—review and editing, supervision. Torsten C. Schmidt: writing—review and editing, supervision.

Corresponding author

Correspondence to Thorsten Teutenberg.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 192 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reinders, L.M.H., Klassen, M.D., Teutenberg, T. et al. Comparison of originator and biosimilar monoclonal antibodies using HRMS, Fc affinity chromatography, and 2D-HPLC. Anal Bioanal Chem 414, 6761–6769 (2022). https://doi.org/10.1007/s00216-022-04236-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04236-8

Keywords

Navigation