Skip to main content
Log in

Titanium(IV) immobilized affinity chromatography facilitated phosphoproteomics analysis of salivary extracellular vesicles for lung cancer

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Extracellular vesicles (EVs) play critical roles in intercellular communications, which contain valuable biomarkers for the detection of cancers. Phosphoproteomics analysis of human saliva EVs (sEVs) can help to discover lung cancer–related candidates. Due to the low abundance of phosphoproteins in sEVs, an efficient, reproducible, and cost-effective strategy is required for their enrichment. Here, we compared the latest phosphopeptide techniques, including TiO2, ZrO2, CaTiO3, and Ti4+-IMAC (immobilized metal affinity chromatography) methods, for phosphopeptide isolation. Our data demonstrated that Ti4+-IMAC was the superior one. By using the optimized Ti4+-IMAC approach, we identified more than 500 sEV phosphopeptides. Quantitative proteomics was employed to comprehensively decipher the sEV phosphoproteome of the normal group (n = 6) and lung cancer group (n = 6). Accordingly, 524 and 333 phosphopeptides were enriched, respectively, which corresponded to 439 and 282 phosphoproteins. In total, 857 unique sEV phosphopeptides corresponding to 721 phosphoproteins were revealed. Among 493 identified phosphosites, 37 were upregulated (> 1.5) and 217 were downregulated (< 0.66) in the cancer group. Our data collectively demonstrated that Ti4+-IMAC is an efficient and reproducible technology for comprehensive analysis of sEV phosphoproteome. Differentially expressed sEV phosphoproteins and phosphosites might be used for the detection of lung cancer non-invasively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30.

    Article  Google Scholar 

  2. Tækker M, Kristjánsdóttir B, Graumann O, Laursen CB, Pietersen PI. Diagnostic accuracy of low-dose and ultra-low-dose CT in detection of chest pathology: a systematic review. Clin Imaging. 2021;74:139–48.

    Article  Google Scholar 

  3. Kaczor-Urbanowicz KE, Martin Carreras-Presas C, Aro K, Tu M, Garcia-Godoy F, Wong DT. Saliva diagnostics–current views and directions. Exp Biol Med. 2017;242(5):459–72.

    Article  CAS  Google Scholar 

  4. Contreras-Naranjo JC, Wu H-J, Ugaz VM. Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine. Lab Chip. 2017;17(21):3558–77.

    Article  CAS  Google Scholar 

  5. Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci. 2019;9(1):19.

    Article  Google Scholar 

  6. Chennakrishnaiah S, Tsering T, Gregory C, Tawil N, Spinelli C, Montermini L, et al. Extracellular vesicles from genetically unstable, oncogene-driven cancer cells trigger micronuclei formation in endothelial cells. Sci Rep. 2020;10(1):1–14.

    Article  Google Scholar 

  7. Okajima M, Miura S, Watanabe S, Tanaka H, Ito K, Ishida T, et al. A prospective phase II study of multimodal prophylactic treatment for afatinib-induced adverse events in advanced non-small cell lung cancer (Niigata Lung Cancer Treatment Group 1401). Transl Lung Cancer Res. 2021;10(1):252–60.

    Article  CAS  Google Scholar 

  8. Sun Y, Huo C, Qiao Z, Shang Z, Uzzaman A, Liu S, et al. Comparative proteomic analysis of exosomes and microvesicles in human saliva for lung cancer. J Proteome Res. 2018;17(3):1101–7.

    Article  CAS  Google Scholar 

  9. Tao WA, Chen IH, Iliuk A. Phosphoproteins in extracellular vesicles as candidate markers for breast cancer. FASEB J. 2017;31:926.4-.4.

  10. Soung YH, Ford S, Zhang V, Chung J. Exosomes in cancer diagnostics. Cancers (Basel). 2017;9(1):8.

    Article  Google Scholar 

  11. Roca LS, Gargano AF, Schoenmakers PJ. Development of comprehensive two-dimensional low-flow liquid-chromatography setup coupled to high-resolution mass spectrometry for shotgun proteomics. Anal Chim Acta. 2021;1156:338349.

    Article  CAS  Google Scholar 

  12. Low TY, Mohtar MA, Lee PY, Omar N, Zhou H, Ye M. Widening the bottleneck of phosphoproteomics: evolving strategies for phosphopeptide enrichment. Mass Spectrom Rev. 2021;40(4):309–33.

    Article  CAS  Google Scholar 

  13. Wang C, Qian L, Ji L, Liu S, Wahid A, Jiang X, et al. Affinity chromatography assisted comprehensive phosphoproteomics analysis of human saliva for lung cancer. Anal Chim Acta. 2020;1111:103–13.

    Article  CAS  Google Scholar 

  14. Wang B WH, Yan Y, Tang K, Ding CF. In situ synthesis of a novel metal oxide affinity chromatography affinity probe for the selective enrichment of low‐abundance phosphopeptides. Rapid Commun Mass Spectrom. 2020;20(34):e8881.

  15. Zhou H, Ye M, Dong J, Corradini E, Cristobal A, Heck AJ, et al. Robust phosphoproteome enrichment using monodisperse microsphere–based immobilized titanium (IV) ion affinity chromatography. Nat Protoc. 2013;8(3):461–80.

    Article  CAS  Google Scholar 

  16. Rontogianni S, Synadaki E, Li B, Liefaard MC, Lips EH, Wesseling J, et al. Proteomic profiling of extracellular vesicles allows for human breast cancer subtyping. Commun Biol. 2019;2(1):1–13.

    Article  CAS  Google Scholar 

  17. Uzzaman A, Zhang X, Qiao Z, Zhan H, Sohail A, Wahid A, et al. Discovery of small extracellular vesicle proteins from human serum for liver cirrhosis and liver cancer. Biochimie. 2020;177:132–41.

    Article  CAS  Google Scholar 

  18. Li Q-r, Ning Z-b, Tang J-s, Nie S, Zeng R. Effect of peptide-to-TiO2 beads ratio on phosphopeptide enrichment selectivity. J Proteome Res. 2009;8(11):5375–81.

  19. Kim Y, Shiba-Ishii A, Nakagawa T, Iemura S-i, Natsume T, Nakano N, et al. Stratifin regulates stabilization of receptor tyrosine kinases via interaction with ubiquitin-specific protease 8 in lung adenocarcinoma. Oncogene. 2018;37(40):5387–402.

  20. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(D1):D605–12.

    Article  CAS  Google Scholar 

  21. Colaert N, Helsens K, Martens L, Vandekerckhove J, Gevaert K. Improved visualization of protein consensus sequences by iceLogo. Nat Methods. 2009;6(11):786–7.

    Article  CAS  Google Scholar 

  22. Liu Y, Mao C, Wang M, Liu N, Ouyang L, Liu S, et al. Cancer progression is mediated by proline catabolism in non-small cell lung cancer. Oncogene. 2020;39(11):2358–76.

    Article  CAS  Google Scholar 

  23. O’Leary C, Gasper H, Sahin KB, Tang M, Kulasinghe A, Adams MN, et al. Epidermal growth factor receptor (EGFR)-mutated non-small-cell lung cancer (NSCLC). Pharmaceuticals. 2020;13(10):273.

    Article  Google Scholar 

  24. Stone MD, Chen X, McGowan T, Bandhakavi S, Cheng B, Rhodus NL, et al. Large-scale phosphoproteomics analysis of whole saliva reveals a distinct phosphorylation pattern. J Proteome Res. 2011;10(4):1728–36.

    Article  CAS  Google Scholar 

  25. Li X-S, Chen X, Sun H, Yuan B-F, Feng Y-Q. Perovskite for the highly selective enrichment of phosphopeptides. J Chromatogr A. 2015;1376:143–8.

    Article  CAS  Google Scholar 

  26. Yang Z, Wang Z, Duan Y. LncRNA MEG3 inhibits non-small cell lung cancer via interaction with DKC1 protein. Oncol Lett. 2020;20(3):2183–90.

    Article  CAS  Google Scholar 

  27. Wang M, Zhang G, Zhang Y, Cui X, Wang S, Gao S, et al. Fibrinogen alpha chain knockout promotes tumor growth and metastasis through integrin–AKT signaling pathway in lung cancer. Mol Cancer Res. 2020;18(7):943–54.

    CAS  PubMed  Google Scholar 

  28. Nakagawa T, Inoue Y, Kodama H, Yamazaki H, Kawai K, Suemizu H, et al. Expression of copper-transporting P-type adenosine triphosphatase (ATP7B) correlates with cisplatin resistance in human non-small cell lung cancer xenografts. Oncol Rep. 2008;20(2):265–70.

    CAS  PubMed  Google Scholar 

  29. Hu C, Zhang R, Jiang D. TMEM16A as a potential biomarker in the diagnosis and prognosis of lung cancer. Arch Iran Med. 2019;22(1):32–8.

    PubMed  Google Scholar 

  30. Xiang Y, Qiu Q, Jiang M, Jin R, Lehmann BD, Strand DW, et al. SPARCL1 suppresses metastasis in prostate cancer. Mol Oncol. 2013;7(6):1019–30.

    Article  CAS  Google Scholar 

  31. Cocucci E, Meldolesi J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol. 2015;25(6):364–72.

    Article  CAS  Google Scholar 

  32. He Y, Li H, Chen Y, Li P, Gao L, Zheng Y, et al. Expression of anoctamin 1 is associated with advanced tumor stage in patients with non-small cell lung cancer and predicts recurrence after surgery. Clin Transl Oncol. 2017;19(9):1091–8.

    Article  CAS  Google Scholar 

  33. Li S-j, Wang W-y, Li B, Chen B, Zhang B, Wang X, et al. Expression of NDRG2 in human lung cancer and its correlation with prognosis. Med Oncol. 2013;30(1):421.

  34. Zhang S, Zhou B, Wang L, Li P, Bennett B, Snyder R, et al. INO80 is required for oncogenic transcription and tumor growth in non-small cell lung cancer. Oncogene. 2017;36(10):1430–9.

    Article  CAS  Google Scholar 

  35. Zhang W, Feng G. C1QTNF6 regulates cell proliferation and apoptosis of NSCLC in vitro and in vivo. Biosci Rep. 2021;41(1):BSR20201541.

Download references

Funding

This work was supported by grants from the Natural Science Foundation of Shanghai (No. 21ZR1433200), the National Key Research and Development Program of China (No. 2017YFC1200204), the National Natural Science Foundation of China (No. 21675110), and the Key Scientific Project of Shanghai Jiao Tong University (No. TMSK-2020–130, No. YG2017MS80).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Wang or Hua Xiao.

Ethics declarations

Ethical approval

In this study, no human patients or animals were involved. Saliva sample were obtained from the Shanghai Jiao Tong University affiliated Chest Hospital according to approved protocols (IRB#M15017) by Institutional Review Board (IRB) of Shanghai Jiao Tong University.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6581 KB)

Supplementary file2 (XLSX 450 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wahid, A., Sohail, A., Wang, H. et al. Titanium(IV) immobilized affinity chromatography facilitated phosphoproteomics analysis of salivary extracellular vesicles for lung cancer. Anal Bioanal Chem 414, 3697–3708 (2022). https://doi.org/10.1007/s00216-022-04013-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04013-7

Keywords

Navigation