Skip to main content
Log in

Silica gel impregnated with deep eutectic solvent-based matrix solid-phase dispersion followed by high-performance liquid chromatography for extraction and detection of triazine herbicides in brown sugar

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel method was developed to determine six triazine herbicides from brown sugar samples using matrix solid-phase dispersion (MSPD) based on silica gel impregnated with deep eutectic solvent (DES) followed by high-performance liquid chromatography with photodiode array detector (HPLC/PDA). Several factors involved in the MSPD procedure such as DES type, DES content in impregnated silica gel, adsorbent-to-sample mass ratio, type and volume of washing solvent, type and volume of eluent, and grinding time were screened using single-factor experiments and then optimized using Box-Behnken design to accomplish the highest recoveries. The above method demonstrated a good linear range (20–1000 μg kg−1) with a determination coefficient exceeding 0.9962, low limits of determination (1.59–3.77 μg kg−1), acceptable limits of quantifications, and acceptable spiking recoveries (95.0–101.7%) for six triazines under optimized conditions. The proposed MSPD-HPLC/PDA method is a convenient, effective, and sensitive method for rapidly isolating and quantifying six triazines from brown sugar.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Eggleston G. Positive aspects of cane sugar and sugar cane derived products in food and nutrition. J Agric Food Chem. 2018;66(16):4007–12. https://doi.org/10.1021/acs.jafc.7b05734.

    Article  CAS  PubMed  Google Scholar 

  2. Jaffé WR. Health effects of non-centrifugal sugar (NCS): a review. Sugar Tech. 2012;14(2):87–94. https://doi.org/10.1007/s12355-012-0145-1.

    Article  CAS  Google Scholar 

  3. Jaffé WR. Nutritional and functional components of non centrifugal cane sugar: a compilation of the data from the analytical literature. J Food Compos Anal. 2015;43:194–202. https://doi.org/10.1016/j.jfca.2015.06.007.

    Article  CAS  Google Scholar 

  4. Zhu Z, Xie C, Li W, Hang F, Li K, Shi C, et al. Nutritional and antioxidant properties of non-centrifugal cane sugar derived from membrane clarified juice. Lwt. 2020;131:109717. https://doi.org/10.1016/j.lwt.2020.109717.

  5. Ebadi S, Azlan A. Nutritional composition and role of non-centrifugal sugar (NCS) in human health. Curr Nutr Food Sci. 2021;17(3):249–57. https://doi.org/10.2174/1573401316999200728184917.

    Article  CAS  Google Scholar 

  6. Sathiakumar N, MacLennan PA, Mandel J, Delzell E. A review of epidemiologic studies of triazine herbicides and cancer. Crit Rev Toxicol. 2011;41(Suppl 1):1–34. https://doi.org/10.3109/10408444.2011.554793.

    Article  CAS  PubMed  Google Scholar 

  7. Brain RA, Anderson JC, Hanson ML. Toxicity of atrazine to marine invertebrates under flow-through conditions—eastern oyster (Crassostrea virginica) and mysid shrimp (Americamysis bahia). Water Air Soil Pollut. 2021;232:142. https://doi.org/10.1007/s11270-021-05075-6.

  8. Barker SA, Long AR, Short CR. Isolation of drug residues from tissues by solid phase dispersion. J Chromatogr A. 1989;475(2):353–61. https://doi.org/10.1016/S0021-9673(01)89689-8.

    Article  CAS  Google Scholar 

  9. Zhang L, Wang C, Li Z, Zhao C, Zhang H, Zhang D. Extraction of acetanilides in rice using ionic liquid-based matrix solid phase dispersion-solvent flotation. Food Chem. 2018;245:1190–5. https://doi.org/10.1016/j.foodchem.2017.11.029.

    Article  CAS  PubMed  Google Scholar 

  10. Bi W, Zhou J, Row KH. Solid phase extraction of lactic acid from fermentation broth by anion-exchangeable silica confined ionic liquids. Talanta. 2011;83(3):974–9. https://doi.org/10.1016/j.talanta.2010.11.006.

    Article  CAS  PubMed  Google Scholar 

  11. Karimi M, Dadfarnia S, Shabani AM. Application of deep eutectic solvent modified cotton as a sorbent for online solid-phase extraction and determination of trace amounts of copper and nickel in water and biological samples. Biol Trace Elem Res. 2017;176(1):207–15. https://doi.org/10.1007/s12011-016-0814-0.

    Article  CAS  PubMed  Google Scholar 

  12. Ghazali Z, Suhaili N, Tahari MNA, Yarmo MA, Hassan NH, Othaman R. Impregnating deep eutectic solvent choline chloride:urea:polyethyleneimine onto mesoporous silica gel for carbon dioxide capture. J Mater Res Technol. 2020;9(3):3249–60. https://doi.org/10.1016/j.jmrt.2020.01.073.

    Article  CAS  Google Scholar 

  13. Taspinar H, Elik A, Kaya S, Altunay N. Optimization of green and rapid analytical procedure for the extraction of patulin in fruit juice and dried fruit samples by air-assisted natural deep eutectic solvent-based solidified homogeneous liquid phase microextraction using experimental design and computational chemistry approach. Food Chem. 2021;358:129817. https://doi.org/10.1016/j.foodchem.2021.129817.

    Article  CAS  PubMed  Google Scholar 

  14. Doldolova K, Bener M, Lalikoğlu M, Aşçı YS, Arat R, Apak R. Optimization and modeling of microwave-assisted extraction of curcumin and antioxidant compounds from turmeric by using natural deep eutectic solvents. Food Chem. 2021;353:129337. https://doi.org/10.1016/j.foodchem.2021.129337.

    Article  CAS  PubMed  Google Scholar 

  15. Assadi F, Mogaddam MR, Farajzadeh MA, Shayanfar A, Nemati M. Development of a green in-situ derivatization and deep eutectic solvent-based dispersive liquid–liquid microextraction method for analysis of short-chain fatty acids in beverage samples optimized by response surface methodology. Microchem J. 2021;166:106226. https://doi.org/10.1016/j.microc.2021.106226.

    Article  CAS  Google Scholar 

  16. Fu X, Wang D, Belwal T, Xie J, Xu Y, Li L, et al. Natural deep eutectic solvent enhanced pulse-ultrasonication assisted extraction as a multi-stability protective and efficient green strategy to extract anthocyanin from blueberry pomace. LWT. 2021;144:111220. https://doi.org/10.1016/j.lwt.2021.111220.

    Article  CAS  Google Scholar 

  17. Wang W, Li J, Wei X, Ding J, Feng H, Yan J, et al. Carbon dioxide adsorption thermodynamics and mechanisms on MCM-41 supported polyethylenimine prepared by wet impregnation method. Appl Energy. 2015;142(15):221–8. https://doi.org/10.1016/j.apenergy.2014.12.072.

    Article  CAS  Google Scholar 

  18. Wu X, Zhang X, Yang Y, Liu Y, Chen X. Development of a deep eutectic solvent-based matrix solid phase dispersion methodology for the determination of aflatoxins in crops. Food Chem. 2019;291:239–44. https://doi.org/10.1016/j.foodchem.2019.04.030.

    Article  CAS  PubMed  Google Scholar 

  19. Nedaei M, Zarei AR, Ghorbanian SA. Miniaturized matrix solid-phase dispersion based on deep eutectic solvent and carbon nitride associated with high-performance liquid chromatography: a new feasibility for extraction and determination of trace nitrotoluene pollutants in soil samples. J Chromatogr A. 2019;1601:35–44. https://doi.org/10.1016/j.chroma.2019.05.008.

    Article  CAS  PubMed  Google Scholar 

  20. Ali J, Tuzen M, Citak D, Uluozlu OD, Mendil D, Kazi TG, et al. Separation and preconcentration of trivalent chromium in environmental waters by using deep eutectic solvent with ultrasound-assisted based dispersive liquid-liquid microextraction method. J Mol Liq. 2019;291:111299. https://doi.org/10.1016/j.molliq.2019.111299.

  21. Mocak J, Bond AM, Mitchell S, Scollary GR. A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: application to voltammetric and stripping techniques (technical report). Pure Appl Chem. 1997;69:297–328. https://doi.org/10.1351/pac199769020297.

    Article  CAS  Google Scholar 

  22. Wang W, Li J, Wei X, Ding J, Feng H, Yan J, et al. Carbon dioxide adsorption thermodynamics and mechanisms on MCM-41 supported polyethylenimine prepared by wet impregnation method. Appl Energy. 2015;142:221–8. https://doi.org/10.1016/j.apenergy.2014.12.072.

    Article  CAS  Google Scholar 

  23. Makos P, Slupek E, Malachowska A. Silica gel impregnated by deep eutectic solvents for adsorptive removal of BTEX from gas streams. Materials (Basel). 2020;13(8):1894. https://doi.org/10.3390/ma13081894.

  24. Ghazali Z, Hassan NH, Yarmo MA, Teh LP, Othaman R. Immobilization of choline chloride: urea onto mesoporous silica for carbon dioxide capture. Sains Malaysiana. 2019;48(5):1025–33. https://doi.org/10.17576/jsm-2019-4805-11.

    Article  CAS  Google Scholar 

  25. Piao H, Jiang Y, Li X, Ma P, Wang X, Song D, et al. Matrix solid-phase dispersion coupled with hollow fiber liquid phase microextraction for determination of triazine herbicides in peanuts. J Sep Sci. 2019;42(12):2123–30. https://doi.org/10.1002/jssc.201801213.

    Article  CAS  PubMed  Google Scholar 

  26. Rodríguez-González N, González-Castro M-J, Beceiro-González E, Muniategui-Lorenzo S. Development of a matrix solid phase dispersion methodology for the determination of triazine herbicides in marine sediments. Microchem J. 2017;133:137–43. https://doi.org/10.1016/j.microc.2017.03.022.

    Article  CAS  Google Scholar 

  27. Ramos JJ, Rial-Otero R, Ramos L, Capelo JL. Ultrasonic-assisted matrix solid-phase dispersion as an improved methodology for the determination of pesticides in fruits. J Chromatogra A. 2008;1212(1–2):145–9. https://doi.org/10.1016/j.chroma.2008.10.028.

    Article  CAS  Google Scholar 

  28. Wen Y, Chen L, Li J, Ma Y, Xu S, Zhang Z, et al. Molecularly imprinted matrix solid-phase dispersion coupled to micellar electrokinetic chromatography for simultaneous determination of triazines in soil, fruit, and vegetable samples. Electrophoresis. 2012;33(15):2454–63. https://doi.org/10.1002/elps.201100612.

    Article  CAS  PubMed  Google Scholar 

  29. Wang Y, Sun Y, Xu B, Li X, Wang X, Zhang H, et al. Matrix solid-phase dispersion coupled with magnetic ionic liquid dispersive liquid-liquid microextraction for the determination of triazine herbicides in oilseeds. Anal Chim Acta. 2015;888:67–74. https://doi.org/10.1016/j.aca.2015.07.028.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports by Guangdong Academy of Sciences’ Project of Science and Technology Development under Grant numbers 2020GDASYL-20200103069.

Funding

This work was supported by Guangdong Academy of Sciences’ Project of Science and Technology Development (Grant number: 2020GDASYL-20200103069).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Peng Li; data curation: Peng Li; formal analysis: Peng Li, Jingjie Tang; investigation: Dongting Huang; methodology: Jingjie Tang; resources: Pingjun Zhang; supervision: Pingjun Zhang; validation: Jingjie Tang, Fei Meng; visualization: Peng Li, Dongting Huang; writing — original draft: Peng Li; writing — review and editing: Peng Li, Fei Meng.

Corresponding author

Correspondence to Fei Meng.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Source of biological material

Not applicable.

Statement on animal welfare

Not applicable.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 449 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Huang, D., Tang, J. et al. Silica gel impregnated with deep eutectic solvent-based matrix solid-phase dispersion followed by high-performance liquid chromatography for extraction and detection of triazine herbicides in brown sugar. Anal Bioanal Chem 414, 3497–3505 (2022). https://doi.org/10.1007/s00216-022-03970-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-03970-3

Keywords

Navigation