Skip to main content

Advertisement

Log in

Interactions between copper (II) and β-amyloid peptide using capillary electrophoresis–ICP–MS: Kd measurements at the nanogram scale

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Although the interaction between the β-amyloid peptide and copper (II) appears to play an important role in Alzheimer’s disease, the affinity constant is still controversial and values are ranging from 107 to 1011 M−1. With the aim of clarifying this point, a complementary method, based on the capillary electrophoresis–ICP–MS hyphenation, was developed and competitive binding experiments were conducted in the presence of nitrilotriacetic acid. The effect of the capillary surface (neutral or positively charged) and nature of the buffer (Tris or Hepes) have been studied. Tris buffer was found to be inappropriate for such determination as it enhances the dissociation of copper (II) complexes, already occurring in the presence of an electric field in capillary electrophoresis. Using Hepes, a value of 1010 M−1 was found for the affinity of the small β-amyloid peptide 1–16 for copper (II), which is in agreement with the values obtained for other proteins involved in neurodegenerative diseases. These constants were also determined in conditions closer to those of biological media (higher ionic strength, presence of carbonates).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goedert M, Spillantini MG. A century of Alzheimer’s disease. Science. 2006;314:777–81. https://doi.org/10.1126/science.1132814.

    Article  CAS  PubMed  Google Scholar 

  2. Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256:184–5.

    Article  CAS  Google Scholar 

  3. Sakono M, Zako T. Amyloid oligomers: formation and toxicity of Aβ oligomers. FEBS J. 2010;277:1348–58. https://doi.org/10.1111/j.1742-4658.2010.07568.x.

    Article  CAS  PubMed  Google Scholar 

  4. Bisceglia F, Natalello A, Serafini MM, Colombo R, Verga L, Lanni C, De Lorenzi E. An integrated strategy to correlate aggregation state, structure and toxicity of Aß 1–42 oligomers. Talanta. 2018;188:17–26. https://doi.org/10.1016/j.talanta.2018.05.062.

    Article  CAS  PubMed  Google Scholar 

  5. Rosenblum WI. Structure and location of amyloid beta peptide chains and arrays in Alzheimer’s disease: new findings require reevaluation of the amyloid hypothesis and of tests of the hypothesis. Neurobiol Aging. 2002;23:225–30. https://doi.org/10.1016/S0197-4580(01)00283-4.

    Article  CAS  PubMed  Google Scholar 

  6. Kayed R, Lasagna-Reeves CA. Molecular mechanisms of amyloid oligomers toxicity. J Alzheimers Dis. 2013;33:S67–78. https://doi.org/10.3233/JAD-2012-129001.

    Article  CAS  PubMed  Google Scholar 

  7. Hung LW, Ciccotosto GD, Giannakis E, Tew DJ, Perez K, Masters CL, Cappai R, Wade JD, Barnham KJ. Amyloid-beta peptide (A beta) neurotoxicity is modulated by the rate of peptide aggregation: a beta dimers and trimers correlate with neurotoxicity. J Neurosci. 2008;28:11950–8. https://doi.org/10.1523/JNEUROSCI.3916-08.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Weibull MGM, Simonsen S, Oksbjerg CR, Tiwari MK, Hemmingsen L. Effects of Cu(II) on the aggregation of amyloid-β. J Biol Inorg Chem. 2019;24:1197–215. https://doi.org/10.1007/s00775-019-01727-5.

    Article  CAS  PubMed  Google Scholar 

  9. Kepp KP, Squitti R. Copper imbalance in Alzheimer’s disease: convergence of the chemistry and the clinic. Coord Chem Rev. 2019;397:168–87. https://doi.org/10.1016/j.ccr.2019.06.018.

    Article  CAS  Google Scholar 

  10. Atwood CS, Moir RD, Huang X, Scarpa RC, Bacarra NME, Romano DM, Hartshorn MA, Tanzi RE, Bush AI. Dramatic aggregation of Alzheimer Aβ by Cu(II) is induced by conditions representing physiological acidosis. J Biol Chem. 1998;273:12817–26. https://doi.org/10.1074/jbc.273.21.12817.

    Article  CAS  PubMed  Google Scholar 

  11. Sarell CJ, Wilkinson SR, Viles JH. Substoichiometric levels of Cu2+ ions accelerate the kinetics of fiber formation and promote cell toxicity of amyloid-β from Alzheimer disease. J Biol Chem. 2010;285:41533–40. https://doi.org/10.1074/jbc.M110.171355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pedersen JT, Østergaard J, Rozlosnik N, Gammelgaard B, Heegaard NHH. Cu(II) mediates kinetically distinct, non-amyloidogenic aggregation of amyloid-β peptides. J Biol Chem. 2011;286:26952–63. https://doi.org/10.1074/jbc.M111.220863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stefaniak E, Atrian-Blasco E, Goch W, Sabater L, Hureau C, Bal W. The aggregation pattern of Aβ 1–40 is altered by the presence of N -truncated Aβ 4–40 and/or Cu II in a similar way through ionic interactions. Chem Eur J. 2021;27:2798–809. https://doi.org/10.1002/chem.202004484.

    Article  CAS  PubMed  Google Scholar 

  14. Faller P, Hureau C. Bioinorganic chemistry of copper and zinc ions coordinated to amyloid-β peptide. Dalton Trans. 2009;7:1080–94. https://doi.org/10.1039/B813398K.

    Article  Google Scholar 

  15. Atrián-Blasco E, Gonzalez P, Santoro A, Alies B, Faller P, Hureau C. Cu and Zn coordination to amyloid peptides: from fascinating chemistry to debated pathological relevance. Coord Chem Rev. 2018;371:38–55. https://doi.org/10.1016/j.ccr.2018.04.007.

    Article  CAS  Google Scholar 

  16. Hatcher LQ, Hong L, Bush WD, Carducci T, Simon JD. Quantification of the binding constant of copper(II) to the amyloid-beta peptide. J Phys Chem B. 2008;112:8160–4. https://doi.org/10.1021/jp710806s.

    Article  CAS  PubMed  Google Scholar 

  17. Zawisza I, Rózga M, Bal W. Affinity of copper and zinc ions to proteins and peptides related to neurodegenerative conditions (Aβ, APP, α-synuclein, PrP). Coord Chem Rev. 2012;256:2297–307. https://doi.org/10.1016/j.ccr.2012.03.012.

    Article  CAS  Google Scholar 

  18. Arena G, Pappalardo G, Sovago I, Rizzarelli E. Copper(II) interaction with amyloid-β: affinity and speciation. Coord Chem Rev. 2012;256:3–12. https://doi.org/10.1016/j.ccr.2011.07.012.

    Article  CAS  Google Scholar 

  19. Alies B, Renaglia E, Rózga M, Bal W, Faller P, Hureau C. Cu(II) affinity for the Alzheimer’s peptide: tyrosine fluorescence studies revisited. Anal Chem. 2013;85:1501–8. https://doi.org/10.1021/ac302629u.

    Article  CAS  PubMed  Google Scholar 

  20. Rózga M, Kłoniecki M, Dadlez M, Bal WA. Direct determination of the dissociation constant for the Cu(II) complex of amyloid β 1−40 peptide. Chem ResToxicol. 2010;23:336–40. https://doi.org/10.1021/tx900344n.

    Article  CAS  Google Scholar 

  21. Bin Y, Jiang Z, Xiang J. Side effect of Tris on the interaction of amyloid β-peptide with Cu2+: evidence for Tris–Aβ–Cu2+ ternary complex formation. Appl Biochem Biotechnol. 2015;176:56–65. https://doi.org/10.1007/s12010-015-1512-7.

    Article  CAS  PubMed  Google Scholar 

  22. Rózga M, Protas AM, Jabłonowska A, Dadlez M, Bal W. The Cu(ii) complex of Aβ40 peptide in ammonium acetate solutions. Evidence for ternary species formation. Chem Commun. 2009;106:1374–6. https://doi.org/10.1039/b819616h.

    Article  CAS  Google Scholar 

  23. Shen Y, Berger SJ, Anderson GA, Smith RD. High-efficiency capillary isoelectric focusing of peptides. Anal Chem. 2000;72:2154–9. https://doi.org/10.1021/ac991367t.

    Article  CAS  PubMed  Google Scholar 

  24. Varenne F, Bourdillon M, Meyer M, Lin Y, Brellier M, Baati R, Charbonnière LJ, Wagner A, Doris E, Taran F, Hagège A. Capillary electrophoresis–inductively coupled plasma-mass spectrometry hyphenation for the determination at the nanogram scale of metal affinities and binding constants of phosphorylated ligands. J Chromatogr A. 2012;1229:280–7. https://doi.org/10.1016/j.chroma.2012.01.066.

    Article  CAS  PubMed  Google Scholar 

  25. Rózga M, Sokołowska M, Protas AM, Bal W. Human serum albumin coordinates Cu(II) at its N-terminal binding site with 1 pM affinity. J Biol Inorg Chem. 2007;12:913–8. https://doi.org/10.1007/s00775-007-0244-8.

    Article  CAS  PubMed  Google Scholar 

  26. Wu R, Tian L, Wang W, Man X. Bifunctional cellulose derivatives for the removal of heavy-metal ions and phenols: synthesis and adsorption studies. J Appl Polym Sci. 2015;132:1–9. https://doi.org/10.1002/app.41830.

    Article  CAS  Google Scholar 

  27. Takahashi M, Takano M, Asada K. Tris-induced cross-linking of thylakoid peptides; thiol oxidation catalyzed by Tris-Cu2+ complexes as a possible mechanism. J Biochem. 1981;90:87–94. https://doi.org/10.1093/oxfordjournals.jbchem.a133472.

    Article  CAS  PubMed  Google Scholar 

  28. Sokołowska M, Bal W. Cu(II) complexation by ‘“non-coordinating”’ N-2-hydroxyethylpiperazine-N0-2-ethanesulfonic acid (HEPES buffer). J Inorg Biochem. 2005;99:1653–60. https://doi.org/10.1016/j.jinorgbio.2005.05.007.

    Article  CAS  PubMed  Google Scholar 

  29. Haas KL, Putterman AB, White DR, Thiele DJ, Franz KJ. Model peptides provide new insights into the role of histidine residues as potential ligands in human cellular copper acquisition via Ctr1. J Am Chem Soc. 2011;133:4427–37. https://doi.org/10.1021/ja108890c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Millero FJ, Hawke DJ. Ionic interactions of divalent metals in natural waters. Mar Chem. 1992;40:19–48. https://doi.org/10.1007/s10953-010-9523-z.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Doctoral School of Chemistry, University of Lyon, France (grant to CD). The authors would like to thank Prof. M. Hébrant, University of Nancy, for the fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hagège.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Published in the topical collection featuring Promising Early-Career (Bio)Analytical Researchers with guest editors Antje J. Baeumner, María C. Moreno-Bondi, Sabine Szunerits, and Qiuquan Wang.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 872 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duroux, C., Hagège, A. Interactions between copper (II) and β-amyloid peptide using capillary electrophoresis–ICP–MS: Kd measurements at the nanogram scale. Anal Bioanal Chem 414, 5347–5355 (2022). https://doi.org/10.1007/s00216-021-03769-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03769-8

Keywords

Navigation