Skip to main content

Advertisement

Log in

Bioanalytical methods for circulating extracellular matrix-related proteins: new opportunities in cancer diagnosis

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The role of the extracellular matrix (ECM) remodeling in tumorigenesis and metastasis is becoming increasingly clear. Cancer development requires that tumor cells recruit a tumor microenvironment permissive for further tumor growth. This is a dynamic process that takes place by a cross-talk between tumor cells and ECM. As a consequence, molecules derived from the ECM changes associated to cancer are released into the bloodstream, representing potential biomarkers of tumor development. This article highlights the importance of developing and improving bioanalytical methods for the detection of ECM remodeling-derived components, as a step forward to translate the basic knowledge about cancer progression into the clinical practice.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siravegna G, Marsoni S, Siena S, Bardelli A. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol. 2017;14:531–48.

    Article  CAS  PubMed  Google Scholar 

  2. Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, Werb Z. Concepts of extracellular matrix remodelling in tumor progression and metastasis. Nat Commun. 2020;11:5120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pickup MW, Mouw JK, Weaver VM. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 2014;15:1243–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Giussani M, Triulzi T, Sozzi G, Tagliabue E. Tumor extracellular matrix remodeling: new perspectives as a circulating tool in the diagnosis and prognosis of solid tumors. Cells. 2019;8:81.

    Article  CAS  PubMed Central  Google Scholar 

  5. Mouw JK, Ou G, Weaver VM. Extracellular matrix assembly: a multiscale deconstruction. Nat Rev Mol Oncol. 2014;15:771–85.

    Article  CAS  Google Scholar 

  6. Sund M, Kalluri R. Tumor stroma derived biomarkers in cancer. Cancer Metastasis Rev. 2009;28:177–83.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA, Hynes RO. The extracellular matrix: tools and insights for the “omics” era. Matrix Biol. 2016;49:10–24.

    Article  CAS  PubMed  Google Scholar 

  8. Naba A, Clauser KR, Hoersch S, Liu H, Carr SA, Hynes RO. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol Cell Proteomics. 2012;11:M111.014647.

    Article  PubMed  Google Scholar 

  9. Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Adv Drug Deliv Rev. 2016;97:4–27.

    Article  CAS  PubMed  Google Scholar 

  10. Wei J, Hu M, Huang K, Lin S, Du H. Roles of proteoglycans and glycosaminoglycans in cancer development and progression. Int J Mol Sci. 2020;21:5983.

    Article  CAS  PubMed Central  Google Scholar 

  11. Barker HE, Cox TR, Erler JT. The rationale for targeting the LOX family in cancer. Nat Rev Cancer. 2012;12:540–52.

    Article  CAS  PubMed  Google Scholar 

  12. Hadler-Olsen E, Winberg J-O, Uhlin-Hansen L. Matrix metalloproteinases in cancer: their value as diagnostic and prognostic markers and therapeutic targets. Tumor Biol. 2013;34:2041–51.

  13. Alaseem A, Alhazzani K, Dondapati P, Alobid S, Bishayee A, Rathinavelu A. Matrix metalloproteinases: a challenging paradigm of cancer management. Sem Cancer Biol. 2019;6:100–15.

  14. Brassart-Pasco S, Brézillon S, Brassart B, Ramont L, Oudart J-B, Monboisse JC. Tumor microenvironment: extracellular matrix alterations influence tumor progression. Front Oncol. 2020;10:397.

    Article  PubMed  PubMed Central  Google Scholar 

  15. López-Otín C, Matrisian LM. Emerging roles of proteases in tumour suppression. Nat Rev Cancer. 2007;7:800–8.

    Article  PubMed  Google Scholar 

  16. Kirchhain A, Poma N, Salvo P, Tedeschi L, Melai B, Vivaldi F, et al. Biosensors for measuring matrix metalloproteinases: an emerging research field. Trends Anal Chem. 2019;110:35–50.

    Article  CAS  Google Scholar 

  17. Leber TM, Balkwill FR. Zymography: a single-step staining method for quantitation of proteolytic activity on substrate gels. Anal Biochem. 1997;249:24–8.

  18. Luan F, Yu Z, Yin L, Leng X, Shi Y, Wang J, et al. Accurate detection of matrix metalloproteinase-2 activity in clinical gastric cancer tissues using a fluorescent probe. Anal Methods. 2019;11:1516–21.

  19. Medintz IL, Clapp AR, Brunel FM, Tiefenbrunn T, Uyeda HT, Chang EL, et al. Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot–peptide conjugates. Nature Mater. 2006;5:581–9.

    Article  CAS  Google Scholar 

  20. Yao H, Zhang Y, Xiao F, Xia Z, Rao J. Quantum dot/bioluminiscence resonance energy transfer based highly sensitive detection of proteases. Angew Chem Int Ed. 2007;46:4346–9.

    Article  CAS  Google Scholar 

  21. Kim Y-P, Daniel WL, Xia Z, Xie H, Mirkin CA, Rao J. Bioluminiscent nanosensors for protease detection based upon gold nanoparticle-luciferase conjugates. Chem Commun. 2010;46:76–8.

    Article  CAS  Google Scholar 

  22. Song E, Cheng D, Song Y, Jiang M, Yu J, Wang Y. A graphene oxide-based FRET sensor for rapid and sensitive detection of matrix metalloproteinase 2 in human serum sample. Biosens Bioelectron. 2013;47:445–50.

    Article  CAS  PubMed  Google Scholar 

  23. Huang Y, Shi M, Hu K, Zhao S, Lu X, Chen Z-F, et al. Carbon nanotube-based multicolor fluorescent peptide probes for highly sensitive multiplex detection of cancer-related proteases. J Mater Chem B. 2013;1:3470–6.

    Article  CAS  PubMed  Google Scholar 

  24. Tran TB, Nguyen PD, Baek C, Min J. Electrical dual-sensing method for real-time quantitative monitoring of cell-secreted MMP-9 and cellular morphology during migration process. Biosens Bioelectron. 2016;77:631–7.

  25. Xu W, Jing P, Yi H, Xue S, Yuan R. Bimetallic Pt/Pd encapsulated mesoporous-hollow CeO2 nanospheres for signal amplification toward electrochemical peptide-based biosensing for matrix metalloproteinase 2. Sens Actuator B: Chem. 2016;230:345–52.

    Article  CAS  Google Scholar 

  26. Wang D, Yuan Y, Zheng Y, Chai Y, Yuan R. An electrochemical peptide cleavage-based biosensor for matrix metalloproteinase-2 detection with exonuclease III-assisted cycling signal amplification. Chem Commun. 2016;52:5943–5.

    Article  CAS  Google Scholar 

  27. Park H, Lee H, Jeong SH, Lee E, Lee W, Liu N, et al. MoS2 field-effect transistor-amyloid-β1-42 hybrid device for signal amplified detection of MMP-9. Anal Chem. 2019;91:8252–8.

    Article  CAS  PubMed  Google Scholar 

  28. Biela A, Watkinson M, Meier UC, Baker D, Giovannoni G, Becer CR, et al. Disposable MMP-9 sensor based on the degradation of peptide cross-linked hydrogel films using electrochemical impedance spectroscopy. Biosens Bioelectron. 2015;68:660–7.

    Article  CAS  PubMed  Google Scholar 

  29. Palomar Q, Xu X, Selegard R, Aili D, Zhang Z. Peptide decorated gold nanoparticle/carbon nanotube electrochemical sensor for ultrasensitive detection of matrix metalloproteinase-7. Sens Actuator B: Chem. 2020;325:128789.

    Article  CAS  Google Scholar 

  30. Shin D-S, Liu Y, Gao Y, Kwa T, Matharu Z, Revzin A. Micropatterned surfaces functionalized with electroactive peptides for detecting protease release from cells. Anal Chem. 2013;85:220–7.

    Article  CAS  PubMed  Google Scholar 

  31. Lee J, Yun JY, Lee WC, Choi S, Lim J, Jeong H, et al. A reference electrode-free electrochemical biosensor for detecting MMP-9 using a concentric electrode device. Sens Actuator B: Chem. 2017;240:735–41.

    Article  CAS  Google Scholar 

  32. Cheng W, Ma J, Kong D, Zhang Z, Khan A, Yi C, et al. One step electrochemical detection for matrix metalloproteinase 2 based on anodic stripping of silver nanoparticles mediated by host-guest interactions. Sens Actuator B: Chem. 2021;330:129379.

    Article  CAS  Google Scholar 

  33. Jing P, Yi H, Xue S, Yuan R, Xu W. A ‘signal on-off’ electrochemical peptide biosensor for matrix metalloproteinase 2 based on target induced cleavage of peptide. RSC Adv. 2015;5:65725–30.

    Article  CAS  Google Scholar 

  34. Krizkova S, Zitka O, Masarik M, Adam V, Stiborova M, Eckschlager T, et al. Assays for determination of matrix metalloproteinases and their activity. Trends Anal Chem. 2011;30:1819–32.

    Article  CAS  Google Scholar 

  35. https://www.merckmillipore.com/ES/es/product/MILLIPLEX-MAP-Human-MMP-Magnetic-Bead-Panel-2-Immunology-Multiplex-Assay,MM_NF-HMMP2MAG-55K?ReferrerURL=https%3A%2F%2Fwww.google.com%2F&bd=1#documentation. (last access March 2021).

  36. Huang L, Wang J, Wang Q, Tang D, Lin Y. Distance-dependent visual fluorescence immunoassay on CdTe quantum dot-impregnated paper through silver ion-exchange reaction. Microchim Acta. 2020;187:563.

    Article  CAS  Google Scholar 

  37. Munge BS, Fisher J, Millord LN, Krause CE, Dowd RS, Rusling JF. Sensitive electrochemical immunosensor for matrix metalloproteinase-3 based on single-wall carbon nanotubes. Analyst. 2010;135:1345–50.

  38. Yang G, Li L, Rana RK, Zhu J-J. Assembled gold nanoparticles on nitrogen-doped graphene for ultrasensitive electrochemical detection of matrix metalloproteinase-2. Carbon. 2013;61:357–66.

    Article  CAS  Google Scholar 

  39. Ren X, Zhang T, Wu D, Yan T, Pang X, Du B, et al. Increased electrocatalyzed performance through high content potassium doped graphene matrix and aptamer tri infinite amplification labels strategy: highly sensitive for matrix metalloproteinases-2 detection. Biosens Bioelectron. 2017;94:694–700.

  40. Zhuang W, Li Y, Chen J, Liu W, Huang H. Copper nanocluster-labeled hybridization chain reaction for potentiometric immunoassay of matrix metalloproteinase-7 with acute kidney injury and renal cancer. Anal Methods. 2019;11:2597–604.

  41. Shi J-J, He T-T, Jiang F, Abdel-Halim ES, Zhu J-J. Ultrasensitive multi-analyte electrochemical immunoassay based on GNR-modified heated screen printed carbon electrodes and PS@PDA-metal labels for rapid detection of MMP-9 and IL-6. Biosens Bioelectron. 2014;55:51–6.

    Article  CAS  PubMed  Google Scholar 

  42. Fan G-C, Han L, Zhu H, Zhang J-R, Zhu J-J. Ultrasensitive photoelectrochemical immunoassay for matrix metalloproteinase-2 detection based on CdS:Mn/CdTe cosensitized TiO2 nanotubes and signal amplification of SiO2@Ab2 conjugates. Anal Chem. 2014;86:12398–405.

    Article  CAS  PubMed  Google Scholar 

  43. Mohseni S, Moghadam TT, Dabirmanesh B, Jabbari S, Khajeh K. Development of a label-free SPR sensor for detection of matrix metalloproteinase-9 by antibody immobilization on carboxymethyldextran chip. Biosens Bioelectron. 2016;81:510–6.

    Article  CAS  PubMed  Google Scholar 

  44. Qian Y, Zeng X, Gao Y, Li H, Kumar S, Gan Q, et al. Intensity-modulated nanoplasmonic interferometric sensor for MMP-9 detection. Lab Chip. 2019;19:1267–76.

  45. Da Rocha Gomes S, Miguel J, Azéma L, Eimer S, Ries C, Dausse E, et al. 99mTc-MAG3-aptamer for imaging human tumors associated with high level of matrix metalloprotease-9. Bioconjug Chem. 2012;23:2192–200.

    Article  Google Scholar 

  46. Duellman T, Chen X, Wakamiya R, Yang J. Nucleic acid-induced potentiation of matrix metalloproteinase-9 enzymatic activity. Biochem J. 2018;475:1597–610.

    Article  CAS  PubMed  Google Scholar 

  47. Scarano S, Dausse E, Crispo F, Toulme J-J, Minunni M. Design of a dual aptamer-based recognition strategy for human matrix metalloproteinase 9 protein by piezoelectric biosensors. Anal Chim Acta. 2015;897:1–9.

    Article  CAS  PubMed  Google Scholar 

  48. Han M-E, Baek S, Kim H-J, Lee JH, Ryu S-H, Oh S-O. Development of an aptamer-conjugated fluorescent nanoprobe for MMP2. Nanoscale Res Lett. 2014;9:104.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Guo J, Tan J, Dou N, Lakshmipriya T, Gopinath SCB. Multiwalled carbon-aptamer conjugates for dielectric detection of matrix metalloproteinase-9. App Physics A. 2021;127:95.

    Article  CAS  Google Scholar 

  50. Li N, Yi L, He Z, Zhang W, Li H, Lin J-M. A DNA-directed covalent conjugation fluorescence probe for in vitro detection of functional matrix metalloproteinases. Analyst. 2017;142:634–40.

    Article  CAS  PubMed  Google Scholar 

  51. Yu X, Hu Y, Zhang Y, Zhang R, Bai X, Gu L, et al. Integrating the polydopamine nanosphere/aptamers nanoplatform with a DNase-I-assisted recycling amplification strategy for simultaneous detection of MMP-9 and MMP-2 during renal interstitial fibrosis. ACS Sens. 2020;5:1119–25.

    Article  CAS  PubMed  Google Scholar 

  52. Bächinger HP, Mizuno K, Vranka JA, Boudko SP. Collagen formation and structure. In: Mander L, Lui H-W, editors. Comprehensive natural products II, vol. 5. Oxford: Elsevier; 2010. p. 469–530.

    Chapter  Google Scholar 

  53. Gelse K, Pöschl E, Aigner T. Collagens—structure, function, and biosynthesis. Adv Drug Deliv Rev. 2003;55:1531–46.

    Article  CAS  PubMed  Google Scholar 

  54. Ricard-Blum S. The collagen family. Cold Spring Harb Perspect Biol. 2011;3:a004978.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Monboisse JC, Oudart JB, Ramont L, Brassart-Pasco S, Maquart FX. Matrikines from basement membrane collagens: a new anti-cancer strategy. Biochim Biophys Acta. 1840;2014:2589–98.

    Google Scholar 

  56. Ng B, Zakrzewski J, Warycha M, Christos PJ, Bajorin DF, Shapiro RL, et al. Shedding of distinct cryptic collagen epitope (HU177) in sera of melanoma patients. Clin Cancer Res. 2008;14:6253–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Luo Y-Q, Yao L-J, Zhao L, Sun A-Y, Dong H, Du J-P, et al. Development of an ELISA for quantification of tumstatin in serum samples and tissue extracts of patients with lung carcinoma. Clin Chim Acta. 2010;411:510–5.

    Article  CAS  PubMed  Google Scholar 

  58. Nielsen SH, Willumsen N, Brix S, Sun S, Manon-Jensen T, Karsdal M, et al. Tumstatin, a matrikine derived from collagen type IVα3, is elevated in serum from patients with non-small cell lung cancer. Translational Oncol. 2018;11:528–234.

    Article  Google Scholar 

  59. Dupont-Deshorgue A, Oudart JB, Brassart B, Deslee G, Perotin JM, Diebold MD, et al. A competitive enzyme-linked immunosorbent assay for quantification of tetrastatin in body fluids and tumor extracts. Anal Biochem. 2015;482:16–21.

    Article  CAS  PubMed  Google Scholar 

  60. Oudart JB, Brassart-Pasco S, Luczka E, Dupont-Deshorgue A, Bellon G, Boudko SP, et al. Analytical methods for measuring collagen XIX in human cell cultures, tissue extracts, and biological fluids. Anal Biochem. 2013;437:111–7.

    Article  CAS  PubMed  Google Scholar 

  61. Leeming DJ, He Y, Veidal SS, Nguyen Q, Larsen D, Koizumi M, et al. A novel marker for assessment of liver matrix remodeling: an enzyme-linked immunosorbent assay (ELISA) detecting a MMP generated type I collagen neo-epitope (C1M). Biomarkers. 2011;16(7):616–28.

    Article  CAS  PubMed  Google Scholar 

  62. Barascuk N, Veidal SS, Larsen L, Larsen DV, Larsen MR, Wang J, et al. A novel assay for extracellular matrix remodeling associated with liver fibrosis: an enzyme-linked immunosorbent assay (ELISA) for a MMP-9 proteolytically revealed neo-epitope of type III collagen. Clin Biochem. 2010;43:899–904.

    Article  CAS  PubMed  Google Scholar 

  63. Veidal SS, Karsdal MA, Nawrocki A, Larsen MR, Dai Y, Zheng Q, et al. Assessment of proteolytic degradation of the basement membrane: a fragment of type IV collagen as a biochemical marker for liver fibrosis. Fibrogenesis Tissue Repair. 2011;4:22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nielsen MJ, Nedergaard AF, Sun S, Veidal SS, Larsen L, Zheng Q, et al. The neo-epitope specific PRO-C3 ELISA measures true formation of type III collagen associated with liver and muscle parameters. Am J Transl Res. 2013;5(3):303–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Willumsen N, Ali SM, Leitzel K, Drabick JJ, Yee N, Polimera HV, et al. Collagen fragments quantified in serum as measures of desmoplasia associate with survival outcome in patients with advanced pancreatic cancer. Sci Reports. 2019;9:19761.

    CAS  Google Scholar 

  66. Lipton A, Leitzel K, Ali SM, Polimera HV, Nagabhairu V, Marks E, et al. High turnover of extracellular matrix reflected by specific protein fragments measured in serum is associated with poor outcomes in two metastatic breast cancer cohorts. Int J Cancer. 2018;143:3027–34.

    Article  CAS  PubMed  Google Scholar 

  67. Kehlet SN, Sanz-Pamplona R, Brix S, Leeming DJ, Karsdal MA, Moreno V. Excessive collagen turnover products are released during colorectal cancer progression and elevated in serum from metastatic colorectal cancer patients. Sci Rep. 2016;6:30599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jensen C, Nielsen SH, Eslam H. Cross-linked multimeric pro-peptides of type III collagen (PC3X) in hepatocellular carcinoma – a biomarker that provides additional prognostic value in AFP positive patients. J Hepatocell Carcinoma. 2020;7:301–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bruno JG, Carrillo MP, Phillips T, Hanson D, Bohmann JA. DNA aptamer beacon assay for C-telopeptide and handheld fluorometer to monitor bone resorption. J Fluoresc. 2011;21:2021–33.

    Article  CAS  PubMed  Google Scholar 

  70. Thorlacius-Ussing J, Kehlet SN, Rønnow SR, Karsdal MA, Willumsen N. Non-invasive profiling of protease-specific elastin turnover in lung cancer: biomarker potential. J Cancer Res Clin Oncol. 2019;145:383–92 (and citations therein).

    Article  CAS  PubMed  Google Scholar 

  71. Katayama M, Kamihagi K, Nakagawa K, Akiyama T, Sano Y, Ouchi R, et al. Increased fragmentation of urinary fibronectin in cancer patients detected by immunoenzymometric assay using domain-specific monoclonal antibodies. Clin Chim Acta. 1993;217:15–128.

    Article  Google Scholar 

  72. Nekouian R, Khalife NJ, Salehi Z. Anti human fibronectin–gold nanoparticle complex, a potential nanobiosensor tool for detection of fibronectin in ECM of cultured cells. Plasmonics. 2014;9:1417–23.

    Article  CAS  Google Scholar 

  73. Sankiewicz A, Romanowicz L, Pyc M, Hermanowicz A, Gorodkiewicz E. SPR imaging biosensor for the quantitation of fibronectin concentration in blood samples. J Pharm Biomed Anal. 2018;150:1–8.

    Article  CAS  PubMed  Google Scholar 

  74. Ogawa A, Tomita N, Kikuchi N, Sando S, Aoyama Y. Aptamer selection for the inhibition of cell adhesion with fibronectin as target. Bioorg Med Chem Lett. 2004;14:4001–4.

    Article  CAS  PubMed  Google Scholar 

  75. Chang C-C, Chen C-P, Chen C-Y, Lin C-W. DNA base-stacking assay utilizing catalytic hairpin assembly-induced gold nanoparticle aggregation for colorimetric protein sensing. Chem Commun. 2016;52:4167–70.

    Article  CAS  Google Scholar 

  76. Katayama M, Sanzen N, Funakoshi A, Sekiguchi K. Laminin γ2-chain fragment in the circulation: a prognostic indicator of epithelial tumor invasion. Cancer Res. 2003;63:222–9.

    CAS  PubMed  Google Scholar 

  77. Nakagawa M, Karashima T, Kamada M, Yoshida E, Yoshimura T, Nojima M, et al. Development of a fully automated chemiluminescence immunoassay for urine monomeric laminin-γ2 as a promising diagnostic tool of non-muscle invasive bladder cancer. Biomarker Res. 2017;5:29.

    Article  Google Scholar 

  78. Sankiewicz A, Romanowicz L, Laudanski L, Zelazowska-Rutkowska B, Puzan B, Cylwik B, et al. SPR imaging biosensor for determination of laminin-5 as a potential cancer marker in biological material. Anal Bioanal Chem. 2016;408:5269–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chakraborty D, Viveka TS, Arvind K, Shyamsundar V, Kanchan M, Alex SA, et al. A facile gold nanoparticle-based ELISA system for detection of osteopontin in saliva: towards oral cancer diagnostics. Clin Chim Acta. 2018;477:166–72.

    Article  CAS  PubMed  Google Scholar 

  80. Washizu K, Kimuta S, Hiraiwa H, Matsunaga K, Kuwabara M, Ariyoshi Y, et al. Development and application of an enzyme immunoassay for tenascin. Clin Chim Acta. 1993;218:15–22.

    Article  Google Scholar 

  81. Kimura K, Ishida S, Matunaga K. Determination of tenascin in human serum by the use of a new enzyme immunoassay. Biomed Res. 1993;14:203–8.

    Article  CAS  Google Scholar 

  82. Ylatupa S, Mertaniemi P, Haglund C, Partanen P. Enzyme immunoassay for quantification of tenascin in biologic samples. Clin Biochem. 1995;28:263–8.

    Article  CAS  PubMed  Google Scholar 

  83. Ropers T, Kroll W, Becka M, Voelker M, Burchardt ER, Schuppan D, et al. Enzyme immunoassay for the measurement of human tenascin-C on the Bayer Immuno 1™ analyzer. Clin Biochem. 2000;33:7–13.

    Article  CAS  PubMed  Google Scholar 

  84. Barclay JL, Keshvari S, Whitehead JP, Inder WJ. Development of an enzyme-linked immunosorbent assay for thrombospondin-1 and comparison of human plasma and serum concentrations. Ann Clin Biochem. 2016;53:606–10.

    Article  CAS  PubMed  Google Scholar 

  85. Macagno A, Athanasiou A, Wittig A, Huber R, Weber S, Keller T, et al. Analytical performance of thrombospondin-1 and cathepsin D immunoassays part of a novel CE-IVD marked test as an aid in the diagnosis of prostate cancer. PLoS One. 2020;15:e0233442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Song J, Merbs SL, Sokoll LJ, Chan DW, Zhang Z. A multiplex immunoassay of serum biomarkers for the detection of uveal melanoma. Clin Proteom. 2019;16:10.

    Article  Google Scholar 

  87. Chatzipetrou M, Gounaridis L, Tsekenis G, Dimadi M, Vestering-Stenger R, Schrender EF, et al. A miniature bio-photonics companion diagnostics platform for reliable cancer treatment monitoring in blood fluids. Sensors. 2021;21:2230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang Z, Luan J, Seth A, Liu L, You M, Gupta P, et al. Microneedle patch for the ultrasensitive quantification of protein biomarkers in interstitial fluid. Nature Biomed Eng. 2021;5:64–76.

    Article  CAS  Google Scholar 

  89. Mukama O, Wu W, Wu J, Lu X, Liu Y, Liu Y, et al. A highly sensitive and specific lateral flow aptasensor for the detection of human osteopontin. Talanta. 2020;210:120624.

    Article  CAS  PubMed  Google Scholar 

  90. Steude A, Schmidt S, Robitzki AA, Pänke O. An electrode array for electrochemical immuno-sensing using the example of impedimetric tenascin C detection. Lab Chip. 2011;11:2884–92.

    Article  CAS  PubMed  Google Scholar 

  91. Chen H, Mei Q, Jia S, Koh K, Wang K, Liu X. High specific detection of osteopontin using a three-dimensional copolymer layer support based on electrochemical impedance spectroscopy. Analyst. 2014;139:4476–81.

    Article  CAS  PubMed  Google Scholar 

  92. Sharma A, Hong S, Singh R, Jang J. Single-walled carbon nanotube based transparent immunosensor for detection of a prostate cancer biomarker osteopontin. Anal Chim Acta. 2015;869:68–73.

    Article  CAS  PubMed  Google Scholar 

  93. Meirinho SG, Dias LG, Peres AM, Rodrigues LR. Development of an electrochemical RNA-aptasensor to detect human osteopontin. Biosens Bioelectron. 2015;71:332–41.

    Article  CAS  PubMed  Google Scholar 

  94. Cao Y, Chen D, Chen W, Yu J, Chen Z, Lia G. Aptamer-based homogeneous protein detection using cucurbit[7]uril functionalized electrode. Anal Chim Acta. 2014;812:45–9.

    Article  CAS  PubMed  Google Scholar 

  95. Meirinho SG, Dias LG, Peres AM, Rodrigues LR. Electrochemical aptasensor for human osteopontin detection using a DNA aptamer selected by SELEX. Anal Chim Acta. 2017;987:25–37.

    Article  CAS  PubMed  Google Scholar 

  96. Zhou S, Gu C, Li Z. Ti3C2Tx MXene and polyoxometalate nanohybrid embedded withpolypyrrole: ultra-sensitive platform for the detection of osteopontin. Appl Surf Sci. 2019;498:143889.

    Article  CAS  Google Scholar 

  97. Iozzo RV, Schaefer L. Proteoglycan form and function: comprehensive nomenclature of proteoglycans. Matrix Biol. 2015;42:11–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kumar AR, Shanmugasundaram KB, Li J, Zhang Z, Sina AAI, Wuethrich A, et al. Ultrasensitive melanoma biomarker detection using a microchip SERS immunoassay with anisotropic Au-Ag alloy nanoboxes. RSC Adv. 2020;10:28778–85.

    Article  CAS  Google Scholar 

  99. Fu J, Shi Z, Li M, Wang Y, Yu L. Label-free detection of chondroitin sulphate proteoglycan 4 by a polyaniline/graphene nanocomposite functionalized impedimetric immunosensor. J Nanomater. 2016;2016:7834657.

    Article  Google Scholar 

  100. Yeh C-H, Kumar V, Moyano DR, Wen S-H, Parashar V, Hsiao S-H, et al. High-performance and high-sensitivity applications of graphene transistors with self-assembled monolayers. Biosens Bioelectron. 2016;77:1008–15.

    Article  CAS  PubMed  Google Scholar 

  101. Gogalic S, Sauer U, Doppler S, Preininger C. Investigating colorimetric protein array assay schemes for detection of recurrence of bladder cancer. Biosensors. 2018;8:10.

    Article  PubMed Central  Google Scholar 

  102. Huang X, Schmidt TA, Shortt C, Arora S, Asari A, Kirsch T, et al. A competitive alphascreen assay for detection of hyaluronan. Glycobiology. 2018;28:137.

    Article  CAS  PubMed  Google Scholar 

  103. Kizer M, Li P, Cress BF, Lin L, Jing TT, Zhang X, et al. RNA aptamers with specificity for heparosan and chondroitin glycosaminoglycans. ACS Omega. 2018;3:13667–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rifai N, Gillette MA, Carr SA. Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotech. 2006;24:971–83.

    Article  CAS  Google Scholar 

  105. Füzéry AK, Levin J, Chan MM, Chan DW. Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues and challenges. Clin Proteomics. 2013;10:13.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Díaz-Fernández A, Miranda-Castro R, Díaz N, Suárez D, de-los-Santos-Álvarez N, Lobo-Castañón MJ. Aptamers targeting protein-specific glycosylation in tumor biomarkers: general selection, characterization and structural modeling. Chem Sci 2020;11:9402–9413.

  107. Díaz-Fernández A, Miranda-Castro R, de-los-Santos-Álvarez N, Lobo-Castañón MJ, Estrela P. Impedimetric aptamer-based glycan PSA score for discrimination of prostate cancer from other prostate diseases. Biosens Bioelectron. 2021;175:112872.

  108. Lorenzo-Gómez R, Miranda-Castro R, de-los-Santos-Álvarez N, Lobo-Castañón MJ. Electrochemical aptamer-based assays coupled to isothermal nucleic acid amplification techniques: new tools for cancer diagnosis. Curr Opin Electrochem. 2019;14:32–43.

  109. Thompson M, Ellison SLR, Wood R. Harmonized guidelines for single laboratory validation of methods of analysis (IUPAC technical report). Pure Appl Chem. 2002;74:835–55.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R.L.-G. thanks the Spanish Government for a predoctoral FPU fellowship (FPU16/05670).

Funding

The work was funded by the Spanish Ministerio de Ciencia y Universidades (RTI-2018-095756-B-I00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Jesús Lobo-Castañón.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection celebrating ABCs 20th Anniversary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lorenzo-Gómez, R., Miranda-Castro, R., de-los-Santos-Álvarez, N. et al. Bioanalytical methods for circulating extracellular matrix-related proteins: new opportunities in cancer diagnosis. Anal Bioanal Chem 414, 147–165 (2022). https://doi.org/10.1007/s00216-021-03416-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03416-2

Keywords

Navigation