Skip to main content
Log in

Fabrication of target specific solid-state optical sensors using chromoionophoric probe–integrated porous monolithic polymer and silica templates for cobalt ions

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The article demonstrates the design of two solid-state sensors for the capturing of industrially relevant ultra-trace Co(II) ions using porous monolithic silica and polymer templates. The mesoporous silica reveals high surface area and voluminous pore dimensions that ensures homogeneous anchoring of 4-((5-(allylthio)-1,3,4-thiadiazol-2-yl)diazenyl)benzene-1,3-diol, as the chromoionophore. We report a first of its kind solid-state macro-/meso-porous polymer monolithic optical sensor from a monomeric chromoionophore, i.e., 2-(4-butylphenyl)diazenyl)-2-hydroxybenzylidene)hydrazine-1-carbothioamide. The monolithic solid-state sensors are characterized using HR-TEM-SAED, FE-SEM-EDAX, p-XRD, XPS, 29Si/13C CPMAS NMR, FT-IR, TGA, and BET/BJH analysis. The electron microscopic images reveal a highly ordered hexagonal mesoporous network of honeycomb pattern for silica monolith, and a long-range macroporous framework with mesoporous channels for polymer monolith. The sensors offer exclusive ion-selectivity and sensitivity for trace cobalt ions, through a concentration proportionate visual color transition, with a response kinetics of ≤ 5 min. The optimization of ion-sensing performance reveals an excellent detection limit of 0.29 and 0.15 ppb for Co(II), using silica- and polymer-based monolithic sensors, respectively. The proposed sensors are tested with industrial wastewater and spent Li-ion batteries, which reveals a superior cobalt ion capturing efficiency of ≥ 99.2% (RSD: ≤ 2.07%).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ullah N, Mansha M, Khan I, Qurashi A. Nanomaterial-based optical chemical sensors for the detection of heavy metals in water: recent advances and challenges. TrAC - Trends Anal Chem. 2018;100:155–66. https://doi.org/10.1016/j.trac.2018.01.002.

    Article  CAS  Google Scholar 

  2. Zhang L, Peng D, Liang RP, Qiu JD. Graphene-based optical nanosensors for detection of heavy metal ions. TrAC - Trends Anal Chem. 2018;102:280–9. https://doi.org/10.1016/j.trac.2018.02.010.

    Article  CAS  Google Scholar 

  3. Mudhoo A, Ramasamy DL, Bhatnagar A, Usman M, Sillanpää M. An analysis of the versatility and effectiveness of composts for sequestering heavy metal ions, dyes and xenobiotics from soils and aqueous milieus. Ecotoxicol Environ Saf. 2020;197:110587. https://doi.org/10.1016/j.ecoenv.2020.110587.

    Article  CAS  PubMed  Google Scholar 

  4. Li J, Guo L, Zhao N, Yang X, Yi R, Li K, et al. Determination of cobalt in low-alloy steels using laser-induced breakdown spectroscopy combined with laser-induced fluorescence. Talanta. 2016;151:234–8. https://doi.org/10.1016/j.talanta.2016.01.023.

    Article  CAS  PubMed  Google Scholar 

  5. Au-Yeung HY, New EJ, Chang CJ. A selective reaction-based fluorescent probe for detecting cobalt in living cells. Chem Commun. 2012;48:5268–70. https://doi.org/10.1039/c2cc31681a.

    Article  CAS  Google Scholar 

  6. Liu Z, Jia X, Bian P, Ma Z. A simple and novel system for colorimetric detection of cobalt ions. Analyst. 2014;139:585–8. https://doi.org/10.1039/c3an01845h.

    Article  CAS  PubMed  Google Scholar 

  7. El-Safty SA, Prabhakaran D, Ismail AA, Matsunaga H, Mizukami F. Three-dimensional wormhole and ordered mesostructures and their applicability as optically ion-sensitive probe templates. Chem Mater. 2008;20:2644–54. https://doi.org/10.1021/cm701966c.

    Article  CAS  Google Scholar 

  8. Zhu H, Fan J, Wang B, Peng X. Fluorescent, MRI, and colorimetric chemical sensors for the first-row d-block metal ions. Chem Soc Rev. 2015;44:4337–66. https://doi.org/10.1039/c4cs00285g.

    Article  CAS  PubMed  Google Scholar 

  9. Ryu KY, Lee SY, Park DY, Kim SY, Kim C. A novel colorimetric chemosensor for detection of Co2+ and S2− in an aqueous environment. Sensors Actuators B Chem. 2017;242:792–800. https://doi.org/10.1016/j.snb.2016.09.180.

    Article  CAS  Google Scholar 

  10. Maity D, Govindaraju T. Highly selective colorimetric chemosensor for Co2+. Inorg Chem. 2011;50:11282–4. https://doi.org/10.1021/ic2015447.

    Article  CAS  PubMed  Google Scholar 

  11. Song EJ, Kang J, You GR, Park GJ, Kim Y, Kim SJ, et al. A single molecule that acts as a fluorescence sensor for zinc and cadmium and a colorimetric sensor for cobalt. Dalt Trans. 2013;42:15514–20. https://doi.org/10.1039/c3dt51635k.

    Article  CAS  Google Scholar 

  12. Kang SM, Jang SC, Kim GY, Lee CS, Huh YS, Roh C. A rapid in situ colorimetric assay for cobalt detection by the naked eye. Sensors (Switzerland). 2016;16:1–10. https://doi.org/10.3390/s16050626.

    Article  CAS  Google Scholar 

  13. Vashisht D, Kaur K, Jukaria R, Vashisht A, Sharma S, Mehta SK. Colorimetric chemosensor based on coumarin skeleton for selective naked eye detection of cobalt (II) ion in near aqueous medium. Sensors Actuators B Chem. 2019;280:219–26. https://doi.org/10.1016/j.snb.2018.10.020.

    Article  CAS  Google Scholar 

  14. Liu Z, Wang W, Xu H, Sheng L, Chen S, Huang D, et al. A “naked eye” and ratiometric chemosensor for cobalt(II) based on coumarin platform in aqueous solution. Inorg Chem Commun. 2015;62:19–23. https://doi.org/10.1016/j.inoche.2015.10.017.

    Article  CAS  Google Scholar 

  15. Awual MR, Yaita T, Shiwaku H, Suzuki S. A sensitive ligand embedded nano-conjugate adsorbent for effective cobalt(II) ions capturing from contaminated water. Chem Eng J. 2015;276:1–10. https://doi.org/10.1016/j.cej.2015.04.058.

    Article  CAS  Google Scholar 

  16. Awual MR, Islam A, Hasan MM, Rahman MM, Asiri AM, Khaleque MA, et al. Introducing an alternate conjugated material for enhanced lead(II) capturing from wastewater. J Clean Prod. 2019;224:920–9. https://doi.org/10.1016/j.jclepro.2019.03.241.

    Article  CAS  Google Scholar 

  17. Li M, Gou H, Al-Ogaidi I, Wu N. Nanostructured sensors for detection of heavy metals: a review. ACS Sustain Chem Eng. 2013;1:713–23. https://doi.org/10.1021/sc400019a.

    Article  CAS  Google Scholar 

  18. Zhang L, Fang M. Nanomaterials in pollution trace detection and environmental improvement. Nano Today. 2010;5:128–42. https://doi.org/10.1016/j.nantod.2010.03.002.

    Article  CAS  Google Scholar 

  19. Yao Y, Tian D, Li H. Cooperative binding of bifunctionalized and click-synthesized silver nanoparticles for colorimetric Co2+ sensing. ACS Appl Mater Interfaces. 2010;2:684–90. https://doi.org/10.1021/am900741h.

    Article  CAS  PubMed  Google Scholar 

  20. Karami C, Taher MA. Colorimetric sensor of cobalt ions in aqueous solution using gold nanoparticles modified with glycyrrhizic acid. Plasmonics. 2018;13:1315–23. https://doi.org/10.1007/s11468-017-0635-9.

    Article  CAS  Google Scholar 

  21. Umair M, Javed I, Rehman M, Madni A, Javeed A, Ghafoor A, et al. Nanotoxicity of inert materials: the case of gold, silver and iron. J Pharm Pharm Sci. 2016;19:161–80. https://doi.org/10.18433/j31021.

    Article  CAS  PubMed  Google Scholar 

  22. Ferdous Z, Nemmar A. Health impact of silver nanoparticles: a review of the biodistribution and toxicity following various routes of exposure. Int J Mol Sci. 2020;21:2375 https://www.mdpi.com/1422-0067/21/7/2375.

    Article  CAS  Google Scholar 

  23. Liu G, Lu M, Huang X, Li T, Xu D. Application of gold-nanoparticle colorimetric sensing to rapid food safety screening. Sensors (Switzerland). 2018;18:1–16. https://doi.org/10.3390/s18124166.

    Article  CAS  Google Scholar 

  24. El-Safty SA, Prabhakaran D, Ismail AA, Matsunaga H, Mizukami F. Nanosensor design packages: a smart and compact development for metal ions sensing responses. Adv Funct Mater. 2007;17:3731–45. https://doi.org/10.1002/adfm.200700447.

    Article  CAS  Google Scholar 

  25. Kongasseri A, Sompalli NK, Modak VA, Mohanty A, Nagarajan S, Rao CVSB, et al. Solid-state ion recognition strategy using 2D hexagonal mesophase silica monolithic platform: a smart two-in-one approach for rapid and selective sensing of Cd2+ and Hg2+ ions. Microchim Acta. 2020;187:403. https://doi.org/10.1007/s00604-020-04363-y.

    Article  CAS  Google Scholar 

  26. Shahat A, Hassan HMA, El-Shahat MF, El Shahawy O, Awual MR. A ligand-anchored optical composite material for efficient vanadium(II) adsorption and detection in wastewater. New J Chem. 2019;43:10324–35. https://doi.org/10.1039/c9nj01818b.

    Article  CAS  Google Scholar 

  27. El-Safty SA. Functionalized hexagonal mesoporous silica monoliths with hydrophobic azo-chromophore for enhanced Co(II) ion monitoring. Adsorption. 2009;15:227–39. https://doi.org/10.1007/s10450-009-9171-z.

    Article  CAS  Google Scholar 

  28. El-Safty SA, Awual MR, Shenashen MA, Shahat A. Simultaneous optical detection and extraction of cobalt(II) from lithium ion batteries using nanocollector monoliths. Sensors Actuators B Chem. 2013;176:1015–25. https://doi.org/10.1016/j.snb.2012.09.040.

    Article  CAS  Google Scholar 

  29. Awual MR, Alharthi NH, Hasan MM, Karim MR, Islam A, Znad H, et al. Inorganic-organic based novel nano-conjugate material for effective cobalt(II) ions capturing from wastewater. Chem Eng J. 2017;324:130–9. https://doi.org/10.1016/j.cej.2017.05.026.

    Article  CAS  Google Scholar 

  30. Shahat A, Awual MR, Naushad M. Functional ligand anchored nanomaterial based facial adsorbent for cobalt(II) detection and removal from water samples. Chem Eng J. 2015;271:155–63. https://doi.org/10.1016/j.cej.2015.02.097.

    Article  CAS  Google Scholar 

  31. Nischang I, Causon TJ. Porous polymer monoliths: from their fundamental structure to analytical engineering applications. TrAC - Trends Anal Chem. 2016;75:108–17. https://doi.org/10.1016/j.trac.2015.05.013.

    Article  CAS  Google Scholar 

  32. Svec F. Porous polymer monoliths: amazingly wide variety of techniques enabling their preparation. J Chromatogr A. 2010;1217:902–24. https://doi.org/10.1016/j.chroma.2009.09.073.

    Article  CAS  PubMed  Google Scholar 

  33. Kongasseri A, Sompalli NK, Rao CVS, Nagarajan S, Mohan AM, Deivasigamani P. Solid-state optical sensing of ultra-trace Hg2+ ions using chromoionophoric probe anchored silica monolithic architectures. Sensors Actuators B Chem. 2020;321:128558. https://doi.org/10.1016/j.snb.2020.128558.

    Article  CAS  Google Scholar 

  34. Ismail AA. A selective optical sensor for antimony based on hexagonal mesoporous structures. J Colloid Interface Sci. 2008;317:288–97. https://doi.org/10.1016/j.jcis.2007.09.028.

    Article  CAS  PubMed  Google Scholar 

  35. Gomaa H, Shenashen MA, Yamaguchi H, Alamoudi AS, El-Safty SA. Extraction and recovery of Co2+ ions from spent lithium-ion batteries using hierarchical mesosponge γ-Al2O3 monolith extractors. Green Chem. 2018;20:1841–57. https://doi.org/10.1039/c7gc03673f.

    Article  CAS  Google Scholar 

  36. Madikizela LM, Zunngu SS, Mlunguza NY, Tavengwa NT, Mdluli PS, Chimuka L. Application of molecularly imprinted polymer designed for the selective extraction of ketoprofen from wastewater. Water SA. 2018;44:406–18. https://doi.org/10.4314/wsa.v44i3.08.

    Article  CAS  Google Scholar 

  37. Morgan DR, Kalachandra S, Shobha HK, Gunduz N, Stejskal EO. Analysis of a dimethacrylate copolymer (Bis-GMA and TEGDMA) network by DSC and 13C solution and solid-state NMR spectroscopy. Biomaterials. 2000;21:1897–903. https://doi.org/10.1016/S0142-9612(00)00067-3.

    Article  CAS  PubMed  Google Scholar 

  38. Sompalli NK, Mohan AM, Rao CVSB, Nagarajan S, Deivasigamani P. Tailor-made porous polymer and silica monolithic designs as probe anchoring templates for the solid-state naked eye sensing and preconcentration of hexavalent chromium. Sensors Actuators B Chem. 2019;298:126896. https://doi.org/10.1016/j.snb.2019.126896.

    Article  CAS  Google Scholar 

  39. Madhesan T, Mohan AM. Porous silica and polymer monolith architectures as solid-state optical chemosensors for Hg2+ ions. Anal Bioanal Chem. 2020;412:7357–70. https://doi.org/10.1007/s00216-020-02870-8.

    Article  CAS  PubMed  Google Scholar 

  40. Sompalli NK, Deivasigamani P. Structurally designed porous polymer monoliths as probe anchoring templates as benign and fast responsive solid-state optical sensors for the sensing and recovery of copper ions. Nanotechnology. 2020;31:414004. https://doi.org/10.1088/1361-6528/ab9e2a.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Sri Sai Company for providing the scrap Li-ion battery and also CVR Labs for sample analysis.

Funding

This study was financially supported by SERB (SB/FT/CS-051/2014), and VIT (Institute Seed Grant 2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhakaran Deivasigamani.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 1693 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sompalli, N.K., Deivasigamani, P. Fabrication of target specific solid-state optical sensors using chromoionophoric probe–integrated porous monolithic polymer and silica templates for cobalt ions. Anal Bioanal Chem 413, 3177–3191 (2021). https://doi.org/10.1007/s00216-021-03255-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03255-1

Keywords

Navigation