Skip to main content
Log in

Feasibility of gas chromatography-atmospheric pressure photoionization–high-resolution mass spectrometry for the analysis of polychlorinated dibenzo-p-dioxins, dibenzofurans, and dioxin-like polychlorinated biphenyls in environmental and feed samples

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, the suitability of atmospheric pressure photoionization (APPI) has been assessed for the determination of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs) by gas chromatography–high-resolution mass spectrometry (GC-HRMS). The APPI of target compounds has been tested in both positive and negative ion modes. Under positive ion mode, the analytes generated the molecular ion, which was favoured using dopants that promote charge exchange gas-phase reactions (i.e., benzene), while in negative ion mode, the ion [M−Cl+O] for PCDFs and dl-PCBs were mainly formed, providing the best results using benzene and diethyl ether as dopants, respectively. Concerning PCDDs, highly chlorinated congeners were mainly ionized by means of the [M−Cl] ion, whereas [M−Cl+O2] was the base peak for tetraCDD and [M−Cl+O] for penta- and hexaCDDs. Method quality parameters, in accordance with the current EU Regulation guidelines for food and feed analysis, showed the good performance of the two GC-APPI-HRMS (Orbitrap) methods since they provided high detection capability (low fg levels), good linearity, and satisfactory precision (RSD% < 9%). In addition, the GC-APPI-HRMS (Orbitrap) methods were validated by analysing selected environmental and feed samples and the results were compared to those obtained using conventional GC-EI-HRMS, demonstrating the good performance in the analysis of the target compounds. Hence, the GC-APPI-HRMS technique can be proposed as alternative to the conventional methods for the determination of PCDD/Fs and dl-PCBs in environmental and feed matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xu W, Wang X, Cai Z. Analytical chemistry of the persistent organic pollutants identified in the Stockholm Convention: a review. Anal Chim Acta. 2013;790:1–13.

    Article  CAS  Google Scholar 

  2. Van Bavel B, Geng D, Cherta L, Nácher-Mestre J, Portolés T, Ábalos M, et al. Atmospheric-pressure chemical ionization tandem mass spectrometry (APGC/MS/MS) an alternative to high-resolution mass spectrometry (HRGC/HRMS) for the determination of dioxins. Anal Chem. 2015;87:9047–53.

    Article  Google Scholar 

  3. Safe S, Hutzinger O, Hill TA. Polychlorinated dibenzo-ρ-dioxins and -furans (PCDDs/PCDFs): sources and environmental impact, epidemiology, mechanisms of action, health risks. 1st ed. Berlin: Springer; 1990.

    Book  Google Scholar 

  4. Kanan S, Samara F. Dioxins and furans: a review from chemical and environmental perspectives. Trends Environ Anal Chem. 2018;17:1–13.

    Article  CAS  Google Scholar 

  5. Dioxins: a technical guide, 9th ed. Ministry of Health, Wellington; 2016.

  6. Van den Berg M, Birnbaum LS, Denison M, De Vito M, Farland W, Feeley M, et al. The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci. 2006;93:223–41.

    Article  Google Scholar 

  7. Toxicological profile for polychlorinated biphenyls (PCBs). Agency for Toxic Substances and Disease Registry; 2000.

  8. Batang ZB, Alikunhi N, Gochfeld M, Burger J, Al-Jahdali R, Al-Jahdali H, et al. Congener-specific levels and patterns of polychlorinated biphenyls in edible fish tissue from the Central Red Sea coast of Saudi Arabia. Sci Total Environ. 2016;572:915–25.

    Article  CAS  Google Scholar 

  9. Portolés T, Sales C, Abalos M, Sauló J, Abad E. Evaluation of the capabilities of atmospheric pressure chemical ionization source coupled to tandem mass spectrometry for the determination of dioxin-like polychlorobiphenyls in complex-matrix food samples. Anal Chim Acta. 2016;937:96–105.

    Article  Google Scholar 

  10. Kauppila TJ, Kersten H, Benter T. Ionization of EPA contaminants in direct and dopant- and atmospheric pressure laser ionization. J Am Soc Mass Spectrom. 2015;26:1036–45.

    Article  CAS  Google Scholar 

  11. Abalos M, Abad E, Van Leeuwen SPJ, De Boer J, Lindström G, Van Bavel B, et al. Results for PCDD/PCDF and dl-PCBs in the first round of UNEPs biennial global interlaboratory assessment on persistent organic pollutants. TrAC - Trends Anal Chem. 2013;46:98–109.

    Article  CAS  Google Scholar 

  12. Van Leeuwen SPJ, Leslie HA, De Boer J, Van Leeuwen SPJ, Van Bavel B, Abad E, et al. POPs analysis reveals issues in bringing laboratories in developing countries to a higher quality level. TrAC - Trends Anal Chem. 2013;46:198–206.

    Article  Google Scholar 

  13. Leslie HA, van Bavel B, Abad E, de Boer J. Towards comparable POPs data worldwide with global monitoring data and analytical capacity building in Africa, Central and Latin America, and the South Pacific. TrAC - Trends Anal Chem. 2013;46:85–97.

    Article  CAS  Google Scholar 

  14. Reiner EJ, Clement RE, Okey AB, Marvin CH. Advances in analytical techniques for polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and dioxin-like PCBs. Anal Bioanal Chem. 2006;386:791–806.

    Article  CAS  Google Scholar 

  15. Reiner EJ. The analysis of dioxins and related compounds. Eric Mass Spectrom Rev. 2009;29:526–59.

    Google Scholar 

  16. Peterson AC, Mcalister GC, Quarmby ST, Griep-raming J, Coon JJ. Development and characterization of a GC-enabled QLT-Orbitrap for high-resolution and high-mass accuracy GC / MS. 2010;82:8618–28.

  17. Commission Regulation (EU) 2017/771 of 3 of May amending Regulation (EC) No 152/2009 as regards the methods for the determination of the levels of dioxins and polychlorinated biphenyls. Off J Eur Union. 2017;115/22–115/42.

  18. Commission Regulation (EU) 2017/644 of 5 of April 2017 Laying down methods of sampling and analysis for the control of levels of dioxins, dioxin-like PCBs and non-dioxin like PCBs in certain foodstuffs and repealing Regulation (EU) No 589/2014. Off J Eur Union. 2017;92/9–92/34.

  19. Malavia J, Santos FJ, Galceran MT. Comparison of gas chromatography-ion-trap tandem mass spectrometry systems for the determination of polychlorinated dibenzo-p-dioxins, dibenzofurans and dioxin-like polychlorinated biphenyls. J Chromatogr A. 2008;1186:302–11.

    Article  CAS  Google Scholar 

  20. L’Homme B, Scholl G, Eppe G, Focant JF. Validation of a gas chromatography-triple quadrupole mass spectrometry method for confirmatory analysis of dioxins and dioxin-like polychlorobiphenyls in feed following new EU Regulation 709/2014. J Chromatogr A. 2015;1376:149–58.

    Article  Google Scholar 

  21. Organtini KL, Haimovici L, Jobst KJ, Reiner EJ, Ladak A, Stevens D, et al. Comparison of atmospheric pressure ionization gas chromatography-triple quadrupole mass spectrometry to traditional high-resolution mass spectrometry for the identification and quantification of halogenated dioxins and furans. Anal Chem. 2015;87:7902–8.

    Article  CAS  Google Scholar 

  22. Revelsky IA, Yashin YS, Sobolevsky TG, Revelsky AI, Miller B, Oriedo V. Electron ionization and atmospheric pressure photochemical ionization in gas chromatography- mass spectrometry analysis of amino acids. Eur J Mass Spectrom. 2003;507:497–507.

    Article  Google Scholar 

  23. McEwen CN, McKay RG. A combination atmospheric pressure LC/MS:GC/MS ion source: advantages of dual AP-LC/MS:GC/MS instrumentation. J Am Soc Mass Spectrom. 2005;16:1730–8.

    Article  CAS  Google Scholar 

  24. Li DX, Gan L, Bronja A, Schmitz OJ. Gas chromatography coupled to atmospheric pressure ionization mass spectrometry (GC-API-MS): review. Anal Chim Acta. 2015;891:43–61.

    Article  CAS  Google Scholar 

  25. ten Dam G, Pussente IC, Scholl G, Eppe G, Schaechtele A, van Leeuwen S. The performance of atmospheric pressure gas chromatography–tandem mass spectrometry compared to gas chromatography–high resolution mass spectrometry for the analysis of polychlorinated dioxins and polychlorinated biphenyls in food and feed samples. J Chromatogr A. 2016;1477:76–90.

    Article  Google Scholar 

  26. Rivera-Austrui J, Martínez K, Ábalos M, Sales C, Portoles T, Beltran J, et al. Analysis of polychlorinated dibenzo-p-dioxins and dibenzofurans in stack gas emissions by gas chromatography-atmospheric pressure chemical ionization-triple-quadrupole mass spectrometry. J Chromatogr A. 2017;1513:245–9.

    Article  CAS  Google Scholar 

  27. Luosujärvi L, Karikko M-M, Haapala M, Saarela V, Huhtala S, Franssila S, et al. Gas chromatography/mass spectrometry of polychlorinated biphenyls using atmospheric pressure chemical ionization and atmospheric pressure photoionization microchips. Rapid Commun Mass Spectrom. 2008;20:425–31.

    Article  Google Scholar 

  28. Geng D, Jogsten IE, Dunstan J, Hagberg J, Wang T, Ruzzin J, et al. Gas chromatography/atmospheric pressure chemical ionization/mass spectrometry for the analysis of organochlorine pesticides and polychlorinated biphenyls in human serum. J Chromatogr A. 2016;1453:88–98.

    Article  CAS  Google Scholar 

  29. Stubleski J, Kukucka P, Salihovic S, Lind PM, Lind L, Kärrman A. A method for analysis of marker persistent organic pollutants in low-volume plasma and serum samples using 96-well plate solid phase extraction. J Chromatogr A. 2018;1546:18–27.

    Article  CAS  Google Scholar 

  30. Hintikka L, Haapala M, Franssila S, Kuuranne T, Leinonen A, Kostiainen R. Feasibility of gas chromatography-microchip atmospheric pressure photoionization-mass spectrometry in analysis of anabolic steroids. J Chromatogr A. 2010;1217:8290–7.

    Article  CAS  Google Scholar 

  31. Haapala M, Luosujärvi L, Saarela V, Kotiaho T, Ketola RA, Franssila S, et al. Microchip for combining gas chromatography or capillary liquid chromatography with atmospheric pressure photoionization-mass spectrometry. Anal Chem. 2007;79:4994–9.

    Article  CAS  Google Scholar 

  32. Revelsky IA, Yashin YS. Talanta new approach to complex organic compounds mixtures analysis based on gas chromatography – atmospheric pressure photoionization – mass-spectrometry. Talanta. 2012;102:110–3.

    Article  CAS  Google Scholar 

  33. Kondyli A, Schrader W. High-resolution GC/MS studies of a light crude oil fraction. J Mass Spectrom. 2019;54:47–54.

    Article  CAS  Google Scholar 

  34. Di Lorenzo RA, Lobodin VV, Cochran J, Kolic T, Besevic S, Sled JG, et al. Fast gas chromatography-atmospheric pressure (photo)ionization mass spectrometry of polybrominated diphenylether flame retardants. Anal Chim Acta. 2019;1056:70–8.

    Article  Google Scholar 

  35. Ábalos M, Parera J, Rivera J, Abad E. PCDD/F and DL-PCB levels in meat from broilers and rabbits fed with fish-oil enriched feeds. Chemosphere. 2010;78:175–84.

    Article  Google Scholar 

  36. Martínez K, Rivera-Austrui J, Adrados MA, Abalos M, Llerena JJ, van Bavel B, et al. Uncertainty assessment of polychlorinated dibenzo-p-dioxins and dibenzofuran and dioxin-like polychlorinated biphenyl analysis in stationary source sample emissions in accordance with the impending European standard EN-1948 using fly ashes. J Chromatogr A. 2010;1216:5888–94.

    Article  Google Scholar 

  37. Ábalos M, Barceló D, Parera J, la Farré M, Llorca M, Eljarrat E, et al. Levels of regulated POPs in fish samples from the Sava River Basin. Comparison to legislated quality standard values. Sci Total Environ. 2019;647:20–8.

    Article  Google Scholar 

Download references

Funding

The authors thank the financial support received from the Spanish Ministry of Science, Innovation and Universities (project codes: PGC2018-095013-B-I00 and CEX2018-000794-S) and from the Generalitat of Catalonia (project code: 2017–SGR–310). Juan F. Ayala-Cabrera acknowledges the Spanish Ministry of Education, Culture and Sports for the PhD FPU fellowship (code: FPU14/05539).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Santos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 157 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayala-Cabrera, J.F., Ábalos, M., Abad, E. et al. Feasibility of gas chromatography-atmospheric pressure photoionization–high-resolution mass spectrometry for the analysis of polychlorinated dibenzo-p-dioxins, dibenzofurans, and dioxin-like polychlorinated biphenyls in environmental and feed samples. Anal Bioanal Chem 412, 3703–3716 (2020). https://doi.org/10.1007/s00216-020-02615-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02615-7

Keywords

Navigation