Skip to main content
Log in

A high-resolution measurement of nucleotide sugars by using ion-pair reverse chromatography and tandem columns

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

N-Linked glycosylation is a cellular process transferring sugars from glycosyl donors to proteins or lipids. Biopharmaceutical products widely produced by culturing mammalian cells such as Chinese hamster ovary (CHO) cells are typically glycosylated during biosynthesis. For some biologics, the N-linked glycan is a critical quality attribute of the drugs. Nucleotide sugars are the glycan donors and impact the intracellular glycosylation process. In current analytical methods, robust separation of nucleotide sugar isomers such as UDP glucose and UDP galactose remains a challenge because of their structural similarity. In this study, we developed a strategy to resolve the separation of major nucleotide sugars including challenging isomers based on the use of ion-pair reverse phase (IP-RP) chromatography. The strategy applies core-shell columns and connects multiple columns in tandem to increase separation power and ultimately enables high-resolution detection of nucleotide sugars from cell extracts. The key parameters in the IP-RP method, including temperature, mobile phase, and flow rates, have been systematically evaluated in this work and the theoretical mechanisms of the chromatographic behavior were proposed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ADP:

Adenosine diphosphate

AMP:

Adenosine monophosphate

ATP:

Adenosine triphosphate

CDP:

Cytidine diphosphate

CMP:

Cytidine monophosphate

CTP:

Cytidine triphosphate

CMP-SA:

Cytidine monophosphate-sialic acid

GDP:

Guanosine diphosphate

GMP:

Guanosine monophosphate

GTP:

Guanosine triphosphate

GDP-Fuc:

Guanosine diphosphate fucose

GDP-Man:

Guanosine diphosphate mannose

IP-RP:

Ion-pair reverse phase

Trp:

Tryptophan

UDP:

Uridine diphosphate

UMP:

Uridine monophosphate

UTP:

Uridine triphosphate

UDP-Gal:

Uridine diphosphate galactose

UDP-Glc:

Uridine diphosphate glucose

UDP-Hex:

Uridine diphosphate hexosamine

UDP-GlcNAc:

Uridine diphosphate N-acetylglucosamine

UDP-HexNAc:

Uridine diphosphate N-acetylhexosamine

References

  1. Sha S, Agarabi C, Brorson K, Lee DY, Yoon S. N-Glycosylation design and control of therapeutic monoclonal antibodies. Trends Biotechnol. 2016;34(10):835–46.

    CAS  PubMed  Google Scholar 

  2. Lalonde ME, Durocher Y. Therapeutic glycoprotein production in mammalian cells. J Biotechnol. 2017;251:128–40.

    CAS  PubMed  Google Scholar 

  3. Higel F, Seidl A, Sorgel F, Friess W. N-glycosylation heterogeneity and the influence on structure, function and pharmacokinetics of monoclonal antibodies and Fc fusion proteins. Eur J Pharm Biopharm. 2016;100:94–100.

    CAS  PubMed  Google Scholar 

  4. Wang Q, Chung CY, Yang W, Yang G, Chough S, Chen Y, et al. Combining butyrated ManNAc with glycoengineered CHO cells improves EPO glycan quality and production. Biotechnol J. 2019;14(4):e1800186.

    PubMed  Google Scholar 

  5. Wang Q, Yang G, Wang T, Yang W, Betenbaugh MJ, Zhang H. Characterization of intact glycopeptides reveals the impact of culture media on site-specific glycosylation of EPO-Fc fusion protein generated by CHO-GS cells. Biotechnol Bioeng. 2019;116(9):2303–15.

    CAS  PubMed  Google Scholar 

  6. Villiger TK, Steinhoff RF, Ivarsson M, Solacroup T, Stettler M, Broly H, et al. High-throughput profiling of nucleotides and nucleotide sugars to evaluate their impact on antibody N-glycosylation. J Biotechnol. 2016;229:3–12.

    CAS  PubMed  Google Scholar 

  7. Blondeel EJ, Braasch K, McGill T, Chang D, Engel C, Spearman M, et al. Tuning a MAb glycan profile in cell culture: supplementing N-acetylglucosamine to favour G0 glycans without compromising productivity and cell growth. J Biotechnol. 2015;214:105–12.

    CAS  PubMed  Google Scholar 

  8. Jedrzejewski PM, del Val IJ, Constantinou A, Dell A, Haslam SM, Polizzi KM, et al. Towards controlling the glycoform: a model framework linking extracellular metabolites to antibody glycosylation. Int J Mol Sci. 2014;15(3):4492–522.

    PubMed  PubMed Central  Google Scholar 

  9. Kochanowski N, Blanchard F, Cacan R, Chirat F, Guedon E, Marc A, et al. Influence of intracellular nucleotide and nucleotide sugar contents on recombinant interferon-gamma glycosylation during batch and fed-batch cultures of CHO cells. Biotechnol Bioeng. 2008;100(4):721–33.

    CAS  PubMed  Google Scholar 

  10. Wong NS, Wati L, Nissom PM, Feng HT, Lee MM, Yap MG. An investigation of intracellular glycosylation activities in CHO cells: effects of nucleotide sugar precursor feeding. Biotechnol Bioeng. 2010;107(2):321–36.

    CAS  PubMed  Google Scholar 

  11. Sumit M, Dolatshahi S, Chu AA, Cote K, Scarcelli JJ, Marshall JK, et al. Dissecting N-glycosylation dynamics in Chinese hamster ovary cells fed-batch cultures using time course omics analyses. iScience. 2019;12:102–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Naik HM, Majewska NI, Betenbaugh MJ. Impact of nucleotide sugar metabolism on protein N-glycosylation in Chinese hamster ovary (CHO) cell culture. Curr Opin Chem Eng. 2018;22:167–76.

    Google Scholar 

  13. Sha S, Yoon S. An investigation of nucleotide sugar dynamics under the galactose supplementation in CHO cell culture. Process Biochem. 2019;81:165–74.

    CAS  Google Scholar 

  14. Jimenez del Val I, Nagy JM, Kontoravdi C. A dynamic mathematical model for monoclonal antibody N-linked glycosylation and nucleotide sugar donor transport within a maturing Golgi apparatus. Biotechnol Prog. 2011;27(6):1730–43.

    CAS  PubMed  Google Scholar 

  15. Del Val IJ, Polizzi KM, Kontoravdi C. A theoretical estimate for nucleotide sugar demand towards Chinese hamster ovary cellular glycosylation. Sci Rep. 2016;6:28547.

    PubMed  PubMed Central  Google Scholar 

  16. Sha S, Huang Z, Agarabi C, Lute S, Brorson K, Yoon S. Prediction of N-linked glycoform profiles of monoclonal antibody with extracellular metabolites and two-step intracellular models. Processes. 2019;7(4):227.

    CAS  Google Scholar 

  17. Burleigh SC, van de Laar T, Stroop CJM, van Grunsven WMJ, O'Donoghue N, Rudd PM, et al. Synergizing metabolic flux analysis and nucleotide sugar metabolism to understand the control of glycosylation of recombinant protein in CHO cells. BMC Biotechnol. 2011;11(1):95.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Sha S, Huang Z, Wang Z, Yoon S. Mechanistic modeling and applications for CHO cell culture development and production. Curr Opin Chem Eng. 2018;22:54–61.

    Google Scholar 

  19. Räbinä J, Mäki M, Savilahti EM, Järvinen N, Penttilä L, Renkonen R. Analysis of nucleotide sugars from cell lysates by ion-pair solid-phase extraction and reversed-phase high-performance liquid chromatography. Glycoconj J. 2001;18(10):799–805.

    PubMed  Google Scholar 

  20. Nakajima K, Taniguchi N. Simultaneous quantification of nucleotide sugar metabolism by LC and LC-MS. In: Taniguchi N, et al., editors. Glycoscience: biology and medicine. Tokyo: Springer Japan; 2015. p. 103–10.

    Google Scholar 

  21. Kochanowski N, Blanchard F, Cacan R, Chirat F, Guedon E, Marc A, et al. Intracellular nucleotide and nucleotide sugar contents of cultured CHO cells determined by a fast, sensitive, and high-resolution ion-pair RP-HPLC. Anal Biochem. 2006;348(2):243–51.

    CAS  PubMed  Google Scholar 

  22. del Val IJ, Kyriakopoulos S, Polizzi KM, Kontoravdi C. An optimized method for extraction and quantification of nucleotides and nucleotide sugars from mammalian cells. Anal Biochem. 2013;443(2):172–80.

    PubMed  Google Scholar 

  23. Jorge TF, Florêncio MH, Ribeiro-Barros AI, António C. Quantification and structural characterization of raffinose family oligosaccharides in Casuarina glauca plant tissues by porous graphitic carbon electrospray quadrupole ion trap mass spectrometry. Int J Mass Spectrom. 2017;413:127–34.

    CAS  Google Scholar 

  24. Warth B, Siegwart G, Lemmens M, Krska R, Adam G, Schuhmacher R. Hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry for the quantification of uridine diphosphate-glucose, uridine diphosphate-glucuronic acid, deoxynivalenol and its glucoside: in-house validation and application to wheat. J Chromatogr A. 2015;1423:183–9.

    CAS  PubMed  Google Scholar 

  25. Eastwood H, Xia F, Lo MC, Zhou J, Jordan JB, McCarter J, et al. Development of a nucleotide sugar purification method using a mixed mode column & mass spectrometry detection. J Pharm Biomed Anal. 2015;115:402–9.

    CAS  PubMed  Google Scholar 

  26. Ito J, Herter T, Baidoo EE, Lao J, Vega-Sanchez ME, Michelle Smith-Moritz A, et al. Analysis of plant nucleotide sugars by hydrophilic interaction liquid chromatography and tandem mass spectrometry. Anal Biochem. 2014;448:14–22.

    CAS  PubMed  Google Scholar 

  27. Pabst M, Grass J, Fischl R, Léonard R, Jin C, Hinterkörner G, et al. Nucleotide and nucleotide sugar analysis by liquid chromatography-electrospray ionization-mass spectrometry on surface-conditioned porous graphitic carbon. Anal Chem. 2010;82(23):9782–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang T, Chen X, Li L, Cao Y, Zhao L, Chai Y, et al. Characterization of nucleotides and nucleotide sugars in Candida albicans by high performance liquid chromatography–mass spectrometry with a porous graphite carbon column. Anal Lett. 2014;47(2):234–49.

    CAS  Google Scholar 

  29. Feng HT, Wong N, Wee S, Lee MM. Simultaneous determination of 19 intracellular nucleotides and nucleotide sugars in Chinese hamster ovary cells by capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;870(1):131–4.

    CAS  PubMed  Google Scholar 

  30. Ryll T, Wagner R. Improved ion-pair high-performance liquid chromatographic method for the quantification of a wide variety of nucleotides and sugar-nucleotides in animal cells. J Chromatogr B Biomed Sci Appl. 1991;570(1):77–88.

    CAS  Google Scholar 

  31. St Amand MM, Radhakrishnan D, Robinson AS, Ogunnaike BA. Identification of manipulated variables for a glycosylation control strategy. Biotechnol Bioeng. 2014;111(10):1957–70.

    CAS  PubMed  Google Scholar 

  32. Nakajima K, Kitazume S, Angata T, Fujinawa R, Ohtsubo K, Miyoshi E, et al. Simultaneous determination of nucleotide sugars with ion-pair reversed-phase HPLC. Glycobiology. 2010;20(7):865–71.

    CAS  PubMed  Google Scholar 

  33. Fekete S, Ganzler K, Fekete J. Efficiency of the new sub-2 mum core-shell (Kinetex) column in practice, applied for small and large molecule separation. J Pharm Biomed Anal. 2011;54(3):482–90.

    CAS  PubMed  Google Scholar 

  34. Zhang J, Raglione T, Wang Q, Kleintop B, Tomasella F, Liang X. Regeneration of tetrabutylammonium ion-pairing reagent distribution in a gradient elution of reversed phase ion-pair chromatography. J Chromatogr Sci. 2011;49:825–31.

    CAS  PubMed  Google Scholar 

  35. Lazarowski ER, Shea DA, Boucher RC, Harden TK. Release of cellular UDP-glucose as a potential extracellular signaling molecule. Mol Pharmacol. 2003;63(5):1190–7.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank Dr. Maurizio Cattaneo for providing the cell line and Dr. Kurt Brorson for the support of this study.

Funding

The study was supported by grants from NSF (1706731) and NSF/IUCRC AMBIC (1624718).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seongkyu Yoon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Disclaimer

This publication reflects the views of the author and should not be construed to represent FDA’s views or policies.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Disclaimer: This publication reflects the views of Cyrus Agarabi and should not be construed to represent FDA’s views or policies.

Electronic supplementary material

ESM 1

(DOCX 97 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sha, S., Handelman, G., Agarabi, C. et al. A high-resolution measurement of nucleotide sugars by using ion-pair reverse chromatography and tandem columns. Anal Bioanal Chem 412, 3683–3693 (2020). https://doi.org/10.1007/s00216-020-02608-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02608-6

Keywords

Navigation