Skip to main content
Log in

Determination of the biomarker L-tryptophan level in diabetic and normal human serum based on an electrochemical sensing method using reduced graphene oxide/gold nanoparticles/18-crown-6

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel nanocomposite-modified electrode based on reduced graphene oxide (rGO) decorated with 18-crown-6 (Cr.6) and gold nanoparticles (GNPs) on the surface of a glassy carbon electrode (GCE) was successfully fabricated to investigate the electrochemical sensing of the biomarker L-tryptophan (L-Trp) in the presence of dopamine (DA), ascorbic acid (AA), urea, and glucose. The rGO-GNPs-Cr.6/GCE displayed high electrochemical catalytic activity for L-Trp determination using square-wave voltammetry (SWV). The electrochemical behavior of L-Trp at the rGO-GNPs-Cr.6/GCE displayed higher oxidation current and potential (oxidation peak current of 40 μA at 0.85 V) than rGO-GNPs/GCE, Cr.6/GCE, GNPs/GCE, rGO/GCE, and bare GCE. The SWV demonstrated a linear range of L-Trp concentration from 0.1 to 2.5 μM. A low limit of detection (LOD) was found for L-Trp, with LOD of about 0.48 μM and 0.61 μM in diabetic and normal serum, respectively. The fabricated sensor demonstrated high selectivity and sensitivity, and good stability and reproducibility for L-Trp sensing. Finally, the nanocomposite (rGO-GNPs-Cr.6)-modified GCE was applied for the determination of L-Trp in normal and diabetic human serum samples, and displayed excellent LOD and recoveries higher than 91.8%.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10.
Fig. 11

Similar content being viewed by others

References

  1. Mazloum-Ardakani M, Rajabzadeh N, Dehghani-Firouzabadi A, Benvidi A, Mirjalili BBF, Zamani L. Development of an electrode modified on the basis of carbon nanoparticles and reduced graphene oxide for simultaneous determination of isoproterenol, uric acid and tryptophan in real samples. J Electroanal Chem. 2016;760:151–7. https://doi.org/10.1016/J.JELECHEM.2015.11.033.

    Article  CAS  Google Scholar 

  2. O’Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 2015;277:32–48.

    Article  Google Scholar 

  3. Idili A, Gerson J, Parolo C, Kippin T, Plaxco KW. An electrochemical aptamer-based sensor for the rapid and convenient measurement of l-tryptophan. Anal Bioanal Chem. 2019;411:4629–35. https://doi.org/10.1007/s00216-019-01645-0.

    Article  CAS  PubMed  Google Scholar 

  4. N. L, C. S (2019) SnO2-SnS2 nanocomposite as electrocatalyst for simultaneous determination of depression biomarkers serotonin and tryptophan. J Electroanal Chem 840:1–9. https://doi.org/10.1016/j.jelechem.2019.03.046

  5. Niu X, Yang X, Mo Z, Guo R, Liu N, Zhao P, et al. Voltammetric enantiomeric differentiation of tryptophan by using multiwalled carbon nanotubes functionalized with ferrocene and β-cyclodextrin. Electrochim Acta. 2019;297:650–9. https://doi.org/10.1016/j.electacta.2018.12.041.

    Article  CAS  Google Scholar 

  6. Hasoň S, Ostatná V, Fojta M. Simultaneous voltammetric determination of free tryptophan, uric acid, xanthine and hypoxanthine in plasma and urine. Electrochim Acta. 2020;329:135132. https://doi.org/10.1016/j.electacta.2019.135132.

    Article  CAS  Google Scholar 

  7. Benvidi A, Ansaripour MM, Rajabzadeh N, Zare HR, Mirjalili B-BF. Developing a nanostructure electrochemical sensor for simultaneous determination of cysteine and tryptophan. Anal Methods. 2015;7:3920–8. https://doi.org/10.1039/C5AY00727E.

    Article  CAS  Google Scholar 

  8. Mao S, Li W, Long Y, Tu Y, Deng A. Sensitive electrochemical sensor of tryptophan based on Ag@C core–shell nanocomposite modified glassy carbon electrode. Anal Chim Acta. 2012;738:35–40. https://doi.org/10.1016/j.aca.2012.06.008.

    Article  CAS  PubMed  Google Scholar 

  9. Iizuka H, Watanabe S, Koshikawa M, Matsumoto Y, Aoyama Y, Ichiba H, et al. Decreased l-tryptophan concentration in distinctive brain regions of mice treated repeatedly with phencyclidine. Anal Bioanal Chem. 2013;405:8137–41. https://doi.org/10.1007/s00216-013-7010-2.

    Article  CAS  PubMed  Google Scholar 

  10. Raoof J-B, Ojani R, Karimi-Maleh H. Carbon Paste Electrode Incorporating 1-[4-(Ferrocenyl Ethynyl) Phenyl]-1-Ethanone for Electrocatalytic and Voltammetric Determination of Tryptophan. Electroanalysis. 2008;20:1259–62. https://doi.org/10.1002/elan.200704176.

    Article  CAS  Google Scholar 

  11. Mazloum-Ardakani M, Ganjipour B, Beitollahi H, Amini MK, Mirkhalaf F, Naeimi H, et al. Simultaneous determination of levodopa, carbidopa and tryptophan using nanostructured electrochemical sensor based on novel hydroquinone and carbon nanotubes: Application to the analysis of some real samples. Electrochim Acta. 2011;56:9113–20. https://doi.org/10.1016/j.electacta.2011.07.021.

    Article  CAS  Google Scholar 

  12. Zhang L-Y, Sun M-X. Determination of histamine and histidine by capillary zone electrophoresis with pre-column naphthalene-2,3-dicarboxaldehyde derivatization and fluorescence detection. J Chromatogr A. 2004;1040:133–40. https://doi.org/10.1016/J.CHROMA.2004.03.051.

    Article  CAS  PubMed  Google Scholar 

  13. Ilisz I, Fodor G, Berkecz R, Iványi R, Szente L, Péter A. Enantioseparation of β-substituted tryptophan analogues with modified cyclodextrins by capillary zone electrophoresis. J Chromatogr A. 2009;1216:3360–5. https://doi.org/10.1016/J.CHROMA.2009.01.083.

    Article  CAS  PubMed  Google Scholar 

  14. Yamada K, Miyazaki T, Shibata T, Hara N, Tsuchiya M. Simultaneous measurement of tryptophan and related compounds by liquid chromatography/electrospray ionization tandem mass spectrometry. J Chromatogr B. 2008;867:57–61. https://doi.org/10.1016/J.JCHROMB.2008.03.010.

    Article  CAS  Google Scholar 

  15. Hovorka SW, Williams TD, Schöneich C. Characterization of the metal-binding site of bovine growth hormone through site-specific metal-catalyzed oxidation and high-performance liquid chromatography-tandem mass spectrometry. Anal Biochem. 2002;300:206–11. https://doi.org/10.1006/abio.2001.5447.

    Article  CAS  PubMed  Google Scholar 

  16. Tang X, Liu Y, Hou H, You T. Electrochemical determination of L-Tryptophan, L-Tyrosine and L-Cysteine using electrospun carbon nanofibers modified electrode. Talanta. 2010;80:2182–6. https://doi.org/10.1016/J.TALANTA.2009.11.027.

    Article  CAS  PubMed  Google Scholar 

  17. Shahrokhian S, Fotouhi L. Carbon paste electrode incorporating multi-walled carbon nanotube/cobalt salophen for sensitive voltammetric determination of tryptophan. Sensors Actuators B Chem. 2007;123:942–9. https://doi.org/10.1016/J.SNB.2006.10.053.

    Article  CAS  Google Scholar 

  18. Stefan-van Staden R-I, Lal B, Holo L. Enantioselective potentiometric membrane electrodes based on C60 fullerene and its derivatives for the assay of l-Histidine. Talanta. 2007;71:1434–7. https://doi.org/10.1016/J.TALANTA.2006.05.088.

    Article  CAS  PubMed  Google Scholar 

  19. Luque GL, Ferreyra NF, Rivas GA. Electrochemical sensor for amino acids and albumin based on composites containing carbon nanotubes and copper microparticles. Talanta. 2007;71:1282–7. https://doi.org/10.1016/J.TALANTA.2006.06.041.

    Article  CAS  PubMed  Google Scholar 

  20. Sun Y, Fei J, Hou J, Zhang Q, Liu Y, Hu B. Simultaneous determination of dopamine and serotonin using a carbon nanotubes-ionic liquid gel modified glassy carbon electrode. Microchim Acta. 2009. https://doi.org/10.1007/s00604-009-0147-1.

  21. Wang Y, Ouyang X, Ding Y, Liu B, Xu D, Liao L. An electrochemical sensor for determination of tryptophan in the presence of DA based on poly(l-methionine)/graphene modified electrode. RSC Adv. 2016;6:10662–9. https://doi.org/10.1039/C5RA24116B.

    Article  CAS  Google Scholar 

  22. Mukdasai S, Poosittisak S, Ngeontae W, Srijaranai S. A highly sensitive electrochemical determination of l-tryptophan in the presence of ascorbic acid and uric acid using in situ addition of tetrabutylammonium bromide on the ß-cyclodextrin incorporated multi-walled carbon nanotubes modified electrode. Sensors Actuators B Chem. 2018;272:518–25. https://doi.org/10.1016/J.SNB.2018.06.014.

    Article  CAS  Google Scholar 

  23. Khan MZH, Liu X, Tang Y, Zhu J, Hu W, Liu X. A glassy carbon electrode modified with a composite consisting of gold nanoparticle, reduced graphene oxide and poly(L-arginine) for simultaneous voltammetric determination of dopamine, serotonin and L-tryptophan. Microchim Acta. 2018;185:439. https://doi.org/10.1007/s00604-018-2979-z.

    Article  CAS  Google Scholar 

  24. Sun D, Li H, Li M, Li C, Dai H, Sun D, et al. Electrodeposition synthesis of a NiO/CNT/PEDOT composite for simultaneous detection of dopamine, serotonin, and tryptophan. Sensors Actuators, B Chem. 2018. https://doi.org/10.1016/j.snb.2017.12.037.

  25. Wang Z, Guo H, Gui R, Jin H, Xia J, Zhang F. Simultaneous and selective measurement of dopamine and uric acid using glassy carbon electrodes modified with a complex of gold nanoparticles and multiwall carbon nanotubes. Sensors Actuators B Chem. 2018;255:2069–77. https://doi.org/10.1016/j.snb.2017.09.010.

    Article  CAS  Google Scholar 

  26. Majdinasab M, Mitsubayashi K, Marty JL. Optical and Electrochemical Sensors and Biosensors for the Detection of Quinolones. Trends Biotechnol. 2019;37:898–915. https://doi.org/10.1016/j.tibtech.2019.01.004.

    Article  CAS  PubMed  Google Scholar 

  27. Yang Y, Asiri AM, Tang Z, Du D, Lin Y. Graphene based materials for biomedical applications. Mater Today. 2013;16(10):365–73. https://doi.org/10.1016/j.mattod.2013.09.004.

  28. Khoshnevisan K, Maleki H, Honarvarfard E, Baharifar H, Gholami M, Faridbod F, et al. Nanomaterial based electrochemical sensing of the biomarker serotonin: a comprehensive review. Microchim Acta. 2019;186:49. https://doi.org/10.1007/s00604-018-3069-y.

    Article  CAS  Google Scholar 

  29. Hasanzadeh M, Shadjou N, Guardia M de la (2017) Current advancement in electrochemical analysis of neurotransmitters in biological fluids. TrAC - Trends Anal. Chem.

  30. Khoshnevisan K, Honarvarfard E, Torabi F, Maleki H, Baharifar H, Faridbod F, et al. Electrochemical detection of serotonin: A new approach. Clin Chim Acta. 2020;501:112–9. https://doi.org/10.1016/j.cca.2019.10.028.

    Article  CAS  PubMed  Google Scholar 

  31. Suvarnaphaet P, Pechprasarn S. Graphene-Based Materials for Biosensors: A Review. Sensors (Basel). 2017;17:2161. https://doi.org/10.3390/s17102161.

    Article  CAS  Google Scholar 

  32. Li J, Jiang J, Xu Z, Liu M, Tang S, Yang C, et al. Facile synthesis of Pd−Cu@Cu2O/N-RGO hybrid and its application for electrochemical detection of tryptophan. Electrochim Acta. 2018;260:526–35. https://doi.org/10.1016/j.electacta.2017.12.125.

    Article  CAS  Google Scholar 

  33. Weng H, Liao F, Wang M, Lin M, Ge X. One-pot synthesis of porous Au-nanoparticles@polymer/reduced graphene oxide composite microspheres by γ-ray radiation and their application as a recyclable high-performance catalyst. RSC Adv. 2016;6:59684–91. https://doi.org/10.1039/C6RA11205F.

    Article  CAS  Google Scholar 

  34. Otari SV, Kumar M, Anwar MZ, Thorat ND, Patel SKS, Lee D, et al. Rapid synthesis and decoration of reduced graphene oxide with gold nanoparticles by thermostable peptides for memory device and photothermal applications. Sci Rep. 2017;7:10980. https://doi.org/10.1038/s41598-017-10777-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Contino A, Maccarrone G, Zimbone M, Musumeci P, Giuffrida A, Calcagno L. The pivotal role of copper(II) in the enantiorecognition of tryptophan and histidine by gold nanoparticles. Anal Bioanal Chem. 2014;406:481–91. https://doi.org/10.1007/s00216-013-7466-0.

    Article  CAS  PubMed  Google Scholar 

  36. Huang J, Zhang L, Chen B, Ji N, Chen F, Zhang Y, et al. Nanocomposites of size-controlled gold nanoparticles and graphene oxide: Formation and applications in SERS and catalysis. Nanoscale. 2010;2:2733–8. https://doi.org/10.1039/C0NR00473A.

    Article  CAS  PubMed  Google Scholar 

  37. Pedersen CJ. The Discovery of Crown Ethers (Noble Lecture). Angew Chemie Int Ed English. 1988;27:1021–7. https://doi.org/10.1002/anie.198810211.

    Article  Google Scholar 

  38. Lai G-S, Zhang H-L, Jin C-M. Electrocatalysis and Voltammetric Determination of Dopamine at a Calix[4]arene Crown-4 Ether Modified Glassy Carbon Electrode. Electroanalysis. 2007;19:496–501. https://doi.org/10.1002/elan.200603751.

    Article  CAS  Google Scholar 

  39. Muzzalupo R, Nicoletta FP, Trombino S, Cassano R, Iemma F, Picci N. A new crown ether as vesicular carrier for 5-fluoruracil: Synthesis, characterization and drug delivery evaluation. Colloids Surfaces B Biointerfaces. 2007;58:197–202. https://doi.org/10.1016/j.colsurfb.2007.03.010.

    Article  CAS  PubMed  Google Scholar 

  40. Atta NF, Ahmed YM, Galal A. Electrochemical Determination of Neurotransmitters at Crown Ether Modified Carbon Nanotube Composite: Application for Sub-nano-sensing of Serotonin in Human Serum. Electroanalysis. 2019;31:1204–14. https://doi.org/10.1002/elan.201800065.

    Article  CAS  Google Scholar 

  41. Atta NF, Ahmed YM, Galal A. Layered-designed composite sensor based on crown ether/Nafion®/polymer/carbon nanotubes for determination of norepinephrine, paracetamol, tyrosine and ascorbic acid in biological fluids. J Electroanal Chem. 2018;828:11–23. https://doi.org/10.1016/j.jelechem.2018.09.029.

    Article  CAS  Google Scholar 

  42. Atta NF, Galal A, Ahmed YM. Highly Conductive Crown Ether/Ionic Liquid Crystal-Carbon Nanotubes Composite Based Electrochemical Sensor for Chiral Recognition of Tyrosine Enantiomers. J Electrochem Soc. 2019;166:B623–30.

    Article  Google Scholar 

  43. Jia X, Chen X, Han J, Ma J, Ma Z. Triple signal amplification using gold nanoparticles, bienzyme and platinum nanoparticles functionalized graphene as enhancers for simultaneous multiple electrochemical immunoassay. Biosens Bioelectron. 2014;53:65–70. https://doi.org/10.1016/j.bios.2013.09.021.

    Article  CAS  PubMed  Google Scholar 

  44. Xu C-X, Huang K-J, Fan Y, Wu Z-W, Li J, Gan T. Simultaneous electrochemical determination of dopamine and tryptophan using a TiO2-graphene/poly(4-aminobenzenesulfonic acid) composite film based platform. Mater Sci Eng C. 2012;32:969–74. https://doi.org/10.1016/j.msec.2012.02.022.

    Article  CAS  Google Scholar 

  45. Thomas J, Khanam R, Vohora D. A validated HPLC-UV method and optimization of sample preparation technique for norepinephrine and serotonin in mouse brain. Pharm Biol. 2015;53:1539–44. https://doi.org/10.3109/13880209.2014.991837.

    Article  CAS  PubMed  Google Scholar 

  46. Komura J, Sakamoto M. Determination of Biogenic Amines and Their Metabolites in Regional Tissue of Mouse Brain by High Performance Liquid Chromatography Using an Ultraviolet Detector. J Liq Chromatogr. 1990;13:1291–9. https://doi.org/10.1080/01483919008049250.

    Article  CAS  Google Scholar 

  47. Comai S, Bertazzo A, Carretti N, Podfigurna-Stopa A, Luisi S, Costa CVL. Serum Levels of Tryptophan, 5-Hydroxytryptophan and Serotonin in Patients Affected with Different Forms of Amenorrhea. Int J Tryptophan Res 3:IJTR.S3804. 2010. https://doi.org/10.4137/IJTR.S3804.

  48. Yang L, Beal MF. Determination of neurotransmitter levels in models of parkinson’s disease by HPLC-ECD. In: Manfredi G, Kawamata H, editors. Methods in Molecular Biology. Totowa: Humana Press; 2011. p. 401–15.

    Google Scholar 

  49. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, et al. Improved Synthesis of Graphene Oxide. ACS Nano. 2010;4:4806–14. https://doi.org/10.1021/nn1006368.

    Article  CAS  PubMed  Google Scholar 

  50. Moon IK, Lee J, Ruoff RS, Lee H. Reduced graphene oxide by chemical graphitization. Nat Commun. 2010:1. https://doi.org/10.1038/ncomms1067.

  51. Mankova AA, Borodin AV, Kargovsky AV, Brandt NN, Luo Q, Sakodynskaya IK, et al. Terahertz time-domain and FTIR spectroscopic study of interaction of α-chymotrypsin and protonated tris with 18-crown-6. Chem Phys Lett. 2013;560:55–9. https://doi.org/10.1016/j.cplett.2012.12.050.

    Article  CAS  Google Scholar 

  52. Song J, Yang C, Ma J, Han Q, Ran P, Fu Y. Voltammetric chiral discrimination of tryptophan using a multilayer nanocomposite with implemented amino-modified $β$-cyclodextrin as recognition element. Microchim Acta. 2018;185:230. https://doi.org/10.1007/s00604-018-2765-y.

    Article  CAS  Google Scholar 

  53. Zhang J, Lahtinen RM, Kontturi K, Unwin PR, Schiffrin DJ (2001) Electron transfer reactions at gold nanoparticles. Chem Commun 1818–1819. https://doi.org/10.1039/B103458H

  54. Pathipati SR, Pavlica E, Treossi E, Palermo V, Bratina G (2019) The role of charge transfer at reduced graphene oxide/organic semiconductor interface on the charge transport properties. Org Electron 105499. https://doi.org/10.1016/j.orgel.2019.105499

  55. Tığ GA. Development of electrochemical sensor for detection of ascorbic acid, dopamine, uric acid and l-tryptophan based on Ag nanoparticles and poly(l-arginine)-graphene oxide composite. J Electroanal Chem. 2017;807:19–28. https://doi.org/10.1016/j.jelechem.2017.11.008.

    Article  CAS  Google Scholar 

  56. Chen J, He P, Bai H, He S, Zhang T, Zhang X, et al. Poly(β-cyclodextrin)/carbon quantum dots modified glassy carbon electrode: Preparation, characterization and simultaneous electrochemical determination of dopamine, uric acid and tryptophan. Sensors Actuators B Chem. 2017;252:9–16. https://doi.org/10.1016/j.snb.2017.05.096.

    Article  CAS  Google Scholar 

  57. Wang L, Yang R, Li J, Qu L, de Harrington PB. A highly selective and sensitive electrochemical sensor for tryptophan based on the excellent surface adsorption and electrochemical properties of PSS functionalized graphene. Talanta. 2019;196:309–16. https://doi.org/10.1016/j.talanta.2018.12.058.

    Article  CAS  PubMed  Google Scholar 

  58. Liu B, Ouyang X, Ding Y, Luo L, Xu D, Ning Y. Electrochemical preparation of nickel and copper oxides-decorated graphene composite for simultaneous determination of dopamine, acetaminophen and tryptophan. Talanta. 2016;146:114–21. https://doi.org/10.1016/j.talanta.2015.08.034.

    Article  CAS  PubMed  Google Scholar 

  59. Safavi A, Momeni S. Electrocatalytic Oxidation of Tryptophan at Gold Nanoparticle-Modified Carbon Ionic Liquid Electrode. Electroanalysis. 2010;22:2848–55. https://doi.org/10.1002/elan.201000279.

    Article  CAS  Google Scholar 

  60. Mattioli IA, Baccarin M, Cervini P, Cavalheiro ÉTG. Electrochemical investigation of a graphite-polyurethane composite electrode modified with electrodeposited gold nanoparticles in the voltammetric determination of tryptophan. J Electroanal Chem. 2019;835:212–9. https://doi.org/10.1016/j.jelechem.2018.12.056.

    Article  CAS  Google Scholar 

  61. Unluturk U, Erbas T. In: Engin A, Engin AB, editors. Diabetes and Tryptophan Metabolism BT - Tryptophan Metabolism: Implications for Biological Processes, Health and Disease. Cham: Springer International Publishing; 2015. p. 147–71.

    Google Scholar 

  62. Matsuoka K, Kato K, Takao T, Ogawa M, Ishii Y, Shimizu F, et al. Concentrations of various tryptophan metabolites are higher in patients with diabetes mellitus than in healthy aged male adults. Diabetol Int. 2017;8:69–75. https://doi.org/10.1007/s13340-016-0282-y.

    Article  PubMed  Google Scholar 

  63. Chou C-A, Lin C-N, Chiu DT-Y, Chen I-W, Chen S-T. Tryptophan as a surrogate prognostic marker for diabetic nephropathy. J Diabetes Investig. 2018;9:366–74. https://doi.org/10.1111/jdi.12707.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to express special thanks to Elham Honarvarfard and Hassan Maleki for their valuable insight.

Funding

This study was financially supported by the Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences (Grant No. 1396-01-100-2249).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Farnoush Faridbod or Mohammad Reza Khorramizadeh.

Ethics declarations

All volunteers signed consent forms to participate in this research study. The study was approved by the Ethics Committee of the Endocrinology and Metabolism Institute, Tehran University of Medical Sciences, and carried out according to the guidelines of the Declaration of Helsinki.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoshnevisan, K., Torabi, F., Baharifar, H. et al. Determination of the biomarker L-tryptophan level in diabetic and normal human serum based on an electrochemical sensing method using reduced graphene oxide/gold nanoparticles/18-crown-6. Anal Bioanal Chem 412, 3615–3627 (2020). https://doi.org/10.1007/s00216-020-02598-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02598-5

Keywords

Navigation