Skip to main content
Log in

Metabolomic profiling of bloodstains on various absorbent and non-absorbent surfaces

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Bloodstains found at crime scenes contain immense information about the crime; thus, studies involving analysis of small molecules in bloodstains have been conducted. However, most of these studies have not accounted for the difference in the results of small molecule analysis due to the surface of bloodstains. To evaluate the “surface effect,” we prepared bloodstains on seven surfaces, including both absorbent and non-absorbent surfaces, and performed global small molecule analysis by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). We used three indicators: (1) count recovery rate (%) of molecular features (MFs), (2) the number of MFs extracted from the surface without bloodstains, and (3) difference in abundance recovery rate (%) of MFs, to determine the ranking of the seven surfaces in the order of their similarity with blood. We also confirmed the correlation between each surface and blood through multivariate analysis. We found that the non-absorbent surfaces ranked better than the absorbent surfaces; wooden flooring was ranked as the most efficient surface, followed by stainless, vinyl flooring, glass, tile, filter paper, and mixed cotton. This study will help in the selection of the most efficient surface for collection of bloodstains for small molecule analysis from a crime scene. This is the first study to identify the effects of surface on extraction of global small molecules from bloodstains; it will help forensic scientists in obtaining more accurate information from small molecules present in the bloodstains collected at the field.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li B, Beveridge P, O’Hare WT, Islam M. The estimation of the age of a blood stain using reflectance spectroscopy with a microspectrophotometer, spectral pre-processing and linear discriminant analysis. Forensic Sci Int. 2011;212(1–3):198–204.

    CAS  PubMed  Google Scholar 

  2. James SH, Kish PE, Sutton TP. Principles of bloodstain pattern analysis: theory and practice. CRC Press; 2005.

  3. Kim J-Y, Park J-H, Kim MI, Lee HH, Kim HL, Jeong K-S, et al. Identification of female-specific blood stains using a 17β-estradiol-targeted aptamer-based sensor. Int J Legal Med. 2018;132(1):91–8.

    Article  Google Scholar 

  4. Bremmer RH, De Bruin DM, De Joode M, Buma WJ, Van Leeuwen TG, Aalders MC. Biphasic oxidation of oxy-hemoglobin in bloodstains. PLoS One. 2011;6(7):e21845.

    Article  CAS  Google Scholar 

  5. Bremmer RH, Nadort A, Van Leeuwen TG, Van Gemert MJ, Aalders MC. Age estimation of blood stains by hemoglobin derivative determination using reflectance spectroscopy. Forensic Sci Int. 2011;206(1–3):166–71.

    Article  CAS  Google Scholar 

  6. Bremmer RH, de Bruin KG, van Gemert MJ, van Leeuwen TG, Aalders MC. Forensic quest for age determination of bloodstains. Forensic Sci Int. 2012;216(1–3):1–11.

    Article  CAS  Google Scholar 

  7. Gudelj I, Keser T, Vučković F, Škaro V, Goreta SŠ, Pavić T, et al. Estimation of human age using N-glycan profiles from bloodstains. Int J Legal Med. 2015;129(5):955–61.

    Article  Google Scholar 

  8. Huang Y, Yan J, Hou J, Fu X, Li L, Hou Y. Developing a DNA methylation assay for human age prediction in blood and bloodstain. Forensic Sci Int Genet. 2015;17:129–36.

    Article  CAS  Google Scholar 

  9. Bauer M. RNA in forensic science. Forensic Sci Int Genet. 2007;1(1):69–74.

    Article  CAS  Google Scholar 

  10. Lech K, Liu F, Davies SK, Ackermann K, Ang JE, Middleton B, et al. Investigation of metabolites for estimating blood deposition time Int. J Legal Med. 2018;132(1):25–32.

    Article  Google Scholar 

  11. Ackermann K, Ballantyne KN, Kayser M. Estimating trace deposition time with circadian biomarkers: a prospective and versatile tool for crime scene reconstruction. Int J Legal Med. 2010;124(5):387–95.

    Article  Google Scholar 

  12. Miller ML, McCord BR, Martz R, Budowle B. The analysis of EDTA in dried bloodstains by electrospray LC-MS-MS and ion chromatography. J Anal Toxicol. 1997;21(7):521–8.

    Article  CAS  Google Scholar 

  13. Simões SS, Ajenjo AC, Dias MJ. Dried blood spots combined to an UPLC–MS/MS method for the simultaneous determination of drugs of abuse in forensic toxicology. J Pharm Biomed Anal. 2018;147:634–44.

    Article  Google Scholar 

  14. Seok AE, Lee J, Lee Y-R, Lee Y-J, Kim H-J, Ihm C, et al. Estimation of age of bloodstains by mass-spectrometry: a metabolomic approach. Anal Chem. 2018;90(21):12431–41.

    Article  CAS  Google Scholar 

  15. Sugie H, Nishikawa T, Funao T. Quantitation of nucleotides, nucleosides and bases in antemortem and postmortem bloodstains by high-performance liquid chromatography. Forensic Sci Int. 1995;71(2):123–30.

    Article  CAS  Google Scholar 

  16. Waigmann E, Lucas WJ, Citovsky V, Zambryski P. Direct functional assay for tobacco mosaic virus cell-to-cell movement protein and identification of a domain involved in increasing plasmodesmal permeability. Proc Natl Acad Sci. 1994;91(4):1433–7.

    Article  CAS  Google Scholar 

  17. Schreiber SL. Small molecules: the missing link in the central dogma. Nat Chem Biol. 2005;1(2):64.

    Article  CAS  Google Scholar 

  18. Anderson RG, Kamen BA, Rothberg KG, Lacey SW. Potocytosis: sequestration and transport of small molecules by caveolae. Science. 1992;255(5043):410–2.

    Article  CAS  Google Scholar 

  19. Schütz H, Gotta JC, Erdmann F, Riße M, Weiler G. Simultaneous screening and detection of drugs in small blood samples and bloodstains. Forensic Sci Int. 2002;126(3):191–6.

    Article  Google Scholar 

  20. Inoue H, Takabe F, Iwasa M, Maeno Y. Identification of fetal hemoglobin and simultaneous estimation of bloodstain age by high-performance liquid chromatography. Int J Legal Med. 1991;104(3):127–31.

    Article  CAS  Google Scholar 

  21. Dissing J, Søndervang A, Lund S. Exploring the limits for the survival of DNA in blood stains. J Forensic Legal Med. 2010;17(7):392–6.

    Article  Google Scholar 

  22. Ellefsen KN, da Costa JL, Concheiro M, Anizan S, Barnes AJ, Pirard S, et al. Cocaine and metabolite concentrations in DBS and venous blood after controlled intravenous cocaine administration. Bioanalysis. 2015;7(16):2041–56.

    Article  CAS  Google Scholar 

  23. Wong P, James CA. Punching and extraction techniques for dried blood spot sample analysis. Dried Blood Spots: Applications and Techniques 2014:160–7.

  24. Verdon TJ, Mitchell RJ, van Oorschot RA. Evaluating the efficiency of DNA extraction methods from different substrates. Forensic Sci Int Genet Suppl Ser. 2011;3(1):e93–e4.

    Article  Google Scholar 

  25. Prinz M, Berghaus G. The effect of various stain carriers on the quality and quantity of DNA extracted from dried bloodstains. Int J Legal Med. 1990;103(3):191–7.

    Article  CAS  Google Scholar 

  26. Sajantila A, Budowle B, Ström M, Johnsson V, Lukka M, Peltonen L, et al. PCR amplification of alleles at the DIS80 locus: comparison of a Finnish and a North American Caucasian population sample, and forensic casework evaluation. Am J Hum Genet. 1992;50(4):816.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Prinz M, Staak M, Berghaus G. DNA extraction from bloodstains in respect to age and stained substrate. Acta Med Leg Soc. 1989;39(2):213–20.

    CAS  Google Scholar 

  28. Patil KB. Isolation and quantification of DNA from blood samples on absorbent and non-absorbent surfaces. 2012.

  29. Winkler M, Kaufmann E, Thoma D, Thierauf A, Weinmann W, Skopp G, et al. Detection of ethyl glucuronide in blood spotted on different surfaces. Forensic Sci Int. 2011;210(1–3):243–6.

    Article  CAS  Google Scholar 

  30. Krueger J, Sachs H, Graw M, Musshoff F, Roider G. Toxicological analysis of bloodstains and traces.

  31. Vignoli A, Tenori L, Luchinat C, Saccenti E. Age and sex effects on plasma metabolite association networks in healthy subjects. J Proteome Res. 2017;17(1):97–107.

    Article  Google Scholar 

  32. Noland RC, Koves TR, Seiler SE, Lum H, Lust RM, Ilkayeva O, et al. Carnitine insufficiency caused by aging and overnutrition compromises mitochondrial performance and metabolic control. J Biol Chem. 2009;284(34):22840–52.

    Article  CAS  Google Scholar 

  33. Johnson LC, Martens CR, Santos-Parker JR, Bassett CJ, Strahler TR, Cruickshank-Quinn C, et al. Amino acid and lipid associated plasma metabolomic patterns are related to healthspan indicators with ageing. Clin Sci. 2018;132(16):1765–77.

    Article  CAS  Google Scholar 

  34. Kumar P, Agrawal P, Chatterjee K. Challenges and opportunities in blood flow through porous substrate: a design and interface perspective of dried blood spot. J Pharm Biomed Anal. 2019;175:112772.

    Article  CAS  Google Scholar 

  35. Dicken L, Knock C, Beckett S, de Castro T, Nickson T, Carr D. The use of micro computed tomography to ascertain the morphology of bloodstains on fabric. Forensic Sci Int. 2015;257:369–75.

    Article  CAS  Google Scholar 

  36. Wu J, Michielsen S, Baby R. Impact spatter bloodstain patterns on textiles. J Forensic Sci. 2019;64(3):702–10.

    Article  Google Scholar 

Download references

Funding

This research was financially supported by Projects for Research and Development of Police Science and Technology under Center for Research and Development of Police Science and Technology and Korean National Police Agency, funded by the Ministry of Science, ICT and Future Planning (PA-I000001).

Author information

Authors and Affiliations

Authors

Contributions

Co-first authors: Hyo-Jin Kim, Yoo-Jin Lee; conceptualization: Hyo-Jin Kim, Yoo-Jin Lee, Jiyeong Lee, Hee-Gyoo Kang; methodology: Hyo-Jin Kim, Yoo-Jin Lee, Jiyeong Lee; formal analysis and investigation: Hyo-Jin Kim, Yoo-Jin Lee, Seungyeon Lee, You-Rim Lee, Hyunsong Son, Miji Shin, Hyebin Choi, Jaehee Yu; writing—original draft preparation: Hyo-Jin Kim, Yoo-Jin Lee; writing—review and editing: Jiyeong Lee, Hee-Gyoo Kang; supervision: Jiyeong Lee, Hee-Gyoo Kang

Corresponding authors

Correspondence to Jiyeong Lee or Hee-Gyoo Kang.

Ethics declarations

Informed consent

All participants gave written informed consent before participation in the study. This study was approved by the Institutional Review Board of Eulji Hospital (EMC 2017-03-003).

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1.97 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, HJ., Lee, YJ., Lee, S. et al. Metabolomic profiling of bloodstains on various absorbent and non-absorbent surfaces. Anal Bioanal Chem 412, 1407–1417 (2020). https://doi.org/10.1007/s00216-019-02371-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02371-3

Keywords

Navigation