Skip to main content
Log in

Ionic-liquid-based microextraction method for the determination of silver nanoparticles in consumer products

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A simple method to determine hazardous silver nanoparticles (AgNPs) based on ionic liquid (IL) dispersive liquid–liquid microextraction and back-extraction is described. This approach involves AgNP stabilization using a cationic surfactant followed by extraction from the sample matrix by means of an IL as an extraction phase. Certain ILs have high affinity for metals, and preliminary experiments showed that those ILs consisting of imidazolium cation efficiently extracted AgNPs in the presence of a cationic surfactant and a chelating agent. Afterward, histamine was used as a dispersing agent to promote phase transfer of differently coated AgNPs from the IL in aqueous solution to be subsequently analyzed by UV–visible spectrometry. The analytical procedure allows AgNPs to be recovered from the sample matrix in an aqueous medium, the enrichment factor being up to 4, preserving both AgNP size and AgNP shape as demonstrated by transmission electron microscopy images and the localized surface plasmon resonance band characteristic of each AgNP. The present method exhibited a linear response for AgNPs in the range from 3 to 20 μg/mL, the limit of detection being 0.15 μg/mL. Method efficiency was assessed in spiked orange juice and face cream, yielding recoveries ranging from 75.7% to 96.6%. The method was evaluated in the presence of other nanointerferents (namely, gold nanoparticles). On the basis of diverse electrophoretic mobilities and surface plasmon resonance bands for metal nanoparticles, capillary electrophoresis was used to prove the lack of interaction of the target AgNPs with gold nanoparticles during the whole protocol; thus, interferents do not affect AgNP determination. As a consequence, the analytical approach described has great potential for the analysis of engineered nanosilver in consumer products.

Simple protocol for the determination of silver nanoparticles (AgNPs) based on dispersive liquid–liquid extraction with a specific short alkyl side chain ionic liquid and their quantitative detection with a UV–visible spectrometer. HMIM•PF6 1-hexyl-3-methylimidazolium hexafluorophosphate, NP nanoparticle, SPR surface plasmon resonance

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AgNP:

Silver nanoparticle

AuNP:

Gold nanoparticle

CAPS:

3-(Cyclohexylamino)-1-propanesulfonic acid

CE:

Capillary electrophoresis

CTAB:

Cetyltrimethylammonium bromide

CTAC:

Cetyltrimethylammonium chloride

EDTA:

Ethylenediaminetetraacetic acid

HMIM-PF6 :

1-Hexyl-3-methylimidazolium hexafluorophosphate

IL:

Ionic liquid

NP:

Nanoparticle

PVP:

Polyvinylpyrrolidone

RSD:

Relative standard deviation

SDS:

Sodium dodecyl sulfate

SPR:

Surface plasmon resonance

TEM:

Transmission electron microscopy

References

  1. He X, Deng H, Hwang H-m. The current application of nanotechnology in food and agriculture. J Food Drug Anal. 2019;27(1):1–21.

    Article  CAS  PubMed  Google Scholar 

  2. Kessler R. Engineered nanoparticles in consumer products: understanding a new ingredient. Environ Health Perspect. 2011;119(3):A120–5.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Higashisaka K, Nagano K, Yoshioka Y, Tsutsumi Y. Nano-safety research: examining the associations among the biological effects of nanoparticles and their physicochemical properties and kinetics. Biol Pharm Bull. 2017;40(3):243–8.

    Article  CAS  PubMed  Google Scholar 

  4. K. Aschberger, H. Rauscher, H. Crutzen, K. Rasmussen, F.M. Christensen, B. Sokull-Klüttgen, H. Stamm. Considerations on information needs for nanomaterials in consumer products. Discussion of a labelling and reporting scheme for nanomaterials in consumer products in the EU. Report EUR 26560. Ispra: Joint Research Centre; 2014. https://doi.org/10.2788/3044.

  5. Guo H, Zhang Z, Xing B, Mukherjee A, Musante C, White JC, et al. Analysis of silver nanoparticles in antimicrobial products using surface-enhanced Raman spectroscopy (SERS). Environ Sci Technol. 2015;49(7):4317–24.

    Article  CAS  PubMed  Google Scholar 

  6. Wei G, Liu FK, Wang CRC. Size-exclusion chromatography of metal nanoparticles and quantum dots. Trends Anal Chem. 2016;80:311–20.

    Article  CAS  Google Scholar 

  7. Li L, Leopold K, Schuster M. Effective and selective extraction of noble metal nanoparticles from environmental water through a noncovalent reversible reaction on an ionic exchange resin. Chem Commun. 2012;48:9165–7.

    Article  CAS  Google Scholar 

  8. Feichmeier NS, Leopold K. Detection of silver nanoparticles in parsley by solid sampling high-resolution-continuum source atomic absorption spectrometry. Anal Bioanal Chem. 2014;406(16):3887–94.

    Article  CAS  Google Scholar 

  9. Schwertfeger DM, Velicogna JR, Jesmer AH, Saatcioglu S, McShane H, Scroggins RP, et al. Extracting metallic nanoparticles from soils for quantitative analysis: method development using engineered silver nanoparticles and SP-ICP-MS. Anal Chem. 2017;89(4):2505–13.

    Article  CAS  PubMed  Google Scholar 

  10. Hoque ME, Khosravi K, Newman K, Metcalfe CD. Detection and characterization of silver nanoparticles in aqueous matrices using asymmetric-flow field flow fractionation with inductively coupled plasma mass spectrometry. J Chromatogr A. 2012;1233:109–15.

    Article  CAS  PubMed  Google Scholar 

  11. Chao JB, Liu JF, Yu SJ, Feng YD, Tan ZQ, Liu R, et al. Speciation analysis of silver nanoparticles and silver ions in antibacterial products and environmental waters via cloud point extraction based separation. Anal Chem. 2011;83:6875–82.

    Article  CAS  PubMed  Google Scholar 

  12. Mattarozzi M, Suman M, Cascio C, Calestani D, Weigel S, Undas A, et al. Analytical approaches for the characterization and quantification of nanoparticles in food and beverages. Anal Bioanal Chem. 2017;409(1):63–80.

    Article  CAS  PubMed  Google Scholar 

  13. Bolea E, Jiménez-Lamana J, Laborda F, Abad-Álvaro I, Bladé C, Arola L, et al. Detection and characterization of silver nanoparticles and dissolved species of silver in culture medium and cells by AsFlFFF-UV-Vis-ICPMS: application to nanotoxicity tests. Analyst. 2014;139:914–22.

    Article  CAS  PubMed  Google Scholar 

  14. Huynh KA, Siska E, Heithmar E, Tadjiki S, Pergantis SA. Detection and quantification of silver nanoparticles at environmentally relevant concentrations using asymmetric flow field–flow fractionation online with single particle inductively coupled plasma mass spectrometry. Anal Chem. 2016;88(9):4909–16.

    Article  CAS  PubMed  Google Scholar 

  15. Motellier S, Pelissier N, Mattei JG. Contribution of single particle inductively coupled plasma mass spectrometry and asymmetrical flow field-flow fractionation for the characterization of silver nanosuspensions. Comparison with other sizing techniques. J Anal At Spectrom. 2017;32(7):1348–58.

    Article  CAS  Google Scholar 

  16. Cayuela A, Soriano ML, Valcárcel M. Reusable sensor based on functionalized carbon dots for the detection of silver nanoparticles in cosmetics via inner filter effect. Anal Chim Acta. 2015;872:70–6.

    Article  CAS  PubMed  Google Scholar 

  17. Ruiz-Palomero C, Soriano ML, Valcárcel M. Sulfonated nanocellulose for the efficient dispersive micro solid-phase extraction and determination of silver nanoparticles in food products. J Chromatogr A. 2016;1428:352–8.

    Article  CAS  PubMed  Google Scholar 

  18. Ruiz-Palomero C, Soriano ML, Valcárcel M. Gels based on nanocellulose with photosensitive ruthenium bipyridine moieties as sensors for silver nanoparticles in real samples. Sensors Actuators B Chem. 2016;229:352–8.

    Article  CAS  Google Scholar 

  19. Kumar A, Joshi H, Pasricha R, Mandale AB, Sastry M. Phase transfer of silver nanoparticles from aqueous to organic solutions using fatty amine molecules. J Colloid Interface Sci. 2013;264(2):396–401.

    Article  CAS  Google Scholar 

  20. Lei Z, Chen B, Koo Y-M, MacFarlane DR. Introduction: ionic liquids. Chem Rev. 2017;117(10):6633–5.

    Article  CAS  PubMed  Google Scholar 

  21. Chen YL, Cao SR, Zhang L, Xi CX, Li XL, Chen ZQ, et al. Preparation of size-controlled magnetite nanoparticles with a graphene and polymeric ionic liquid coating for the quick, easy, cheap, effective, rugged and safe extraction of preservatives from vegetables. J Chromatogr A. 2016;1448:9–19.

    Article  CAS  PubMed  Google Scholar 

  22. Del Sesto RE, Koppisch AT, Fox DT, Jones MR, Lovejoy KS, Stevens TE, et al. Biphasic extraction, recovery and identification of organic and inorganic compounds with ionic liquids. In: Shiflett MB, Scurto AM, editors. Ionic liquids: current state and future directions. ACS symposium series, vol. 1250. Washington: American Chemical Society; 2017. p. 283–302.

    Chapter  Google Scholar 

  23. Berthod A, Ruiz-Ángel MJ, Carda-Broch S. Recent advances on ionic liquid uses in separation techniques. J Chromatogr A. 2018;1559:2–16. https://doi.org/10.1016/j.chroma.2017.09.044.

  24. Ventura SPM, e Silva FA, Quental MV, Mondal D, Freire MG, Coutinho JAP. Ionic-liquid-mediated extraction and separation processes for bioactive compounds: past, present, and future trends. Chem Rev. 2017;117(10):6984–7052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Justin SJ, Peter B, Jarno M, Lea R. Environmental aspects of metals removal from waters and gold recovery. AIChE J. 2015;61:2739–48.

    Article  CAS  Google Scholar 

  26. He Z, Alexandridis P. Nanoparticles in ionic liquids: interactions and organization. Phys Chem Chem Phys. 2015;17(28):18238–61.

    Article  CAS  PubMed  Google Scholar 

  27. Chen S, Sun Y, Chao J, Cheng L, Chen Y, Liu J. Dispersive liquid–liquid microextraction of silver nanoparticles in water using ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate. J Environ Sci. 2016;41:211–7.

    Article  Google Scholar 

  28. López-Lorente AI, Soriano ML, Valcárcel M. Analysis of citrate-capped gold and silver nanoparticles by thiol ligand exchange capillary electrophoresis. Microchim Acta. 2014;181:1789–96.

    Article  CAS  Google Scholar 

  29. Dueñas-Mas MJ, Soriano ML, Ruiz-Palomero C, Valcárcel M. Modified nanocellulose as promising material for the extraction of gold nanoparticles. Microchem J. 2018;138:379–83.

    Article  CAS  Google Scholar 

  30. Lopez-Lorente AI, Simonet BM, Valcárcel M. Rapid analysis of gold nanoparticles in liver and river water samples. Analyst. 2012;137:3528–34.

    Article  CAS  PubMed  Google Scholar 

  31. Docherty KM, Dixon JK, Kulpa CF Jr. Biodegradability of imidazolium and pyridinium ionic liquids by an activated sludge microbial community. Biodegradation. 2007;18:481–93.

    Article  CAS  PubMed  Google Scholar 

  32. Liu FK, Tsai MH, Hsu YC, Chu TC. Analytical separation of Au/Ag core/shell nanoparticles by capillary electrophoresis. J Chromatogr A. 2006;1133:340–6.

    Article  CAS  PubMed  Google Scholar 

  33. López-Lorente AI, Simonet B, Valcárcel M. Electrophoretic methods for the analysis of nanoparticles. Trends Anal Chem. 2011;30:58–71.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the European Commission within the Seventh Framework Programme for the project FP7-NMP-2007-2013-SME5-280550. MLS expresses her gratitude to the Junta de Comunidades de Castilla-La Mancha-FEDER Funds for funding the project SBPLY/17/180501/000333.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Laura Soriano.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ABC Highlights: authored by Rising Stars and Top Experts.

Electronic supplementary material

ESM 1

(PDF 136 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soriano, M.L., Ruiz-Palomero, C. & Valcárcel, M. Ionic-liquid-based microextraction method for the determination of silver nanoparticles in consumer products. Anal Bioanal Chem 411, 5023–5031 (2019). https://doi.org/10.1007/s00216-019-01889-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01889-w

Keywords

Navigation