Skip to main content
Log in

Preconcentration by solvent removal: techniques and applications

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Preconcentration is the aspect of analytical method development covering the need to improve detection sensitivity. This review collects the advances in a diversity of approaches to achieve preconcentration by solvent removal. Evaporation in microfluidic and paper-based devices is reported in a variety of forms and later compared to membrane-assisted evaporation. Sample partitioning in an immiscible fluid is also described. The reported methodologies highlight the need to achieve good control of the gas-liquid interface to obtain accurate results. A comprehensive comparison of different strategies is presented here discussing their benefits and drawbacks as well as the research needs in this area.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Van Vliet HPM, Bootsmann TC, Frei RW, Brinkman UAT. On-line trace enrichment in high-performance liquid chromatography using a pre-column. J Chromatogr A. 1979;185:483–95.

    Article  Google Scholar 

  2. Werkhoven-Goewie CE, Brinkman UAT, Frei RW. Trace enrichment of polar compounds on chemically bonded and carbonaceous sorbents and application to chlorophenol. Anal Chem. 1981;53:2072–80.

    Article  CAS  Google Scholar 

  3. Auroux PA, Iossifidis D, Reyes DR, Manz A. Micro total analysis systems. 2. Analytical standard operations and applications. Anal Chem. 2002;74:2637–52.

    Article  CAS  PubMed  Google Scholar 

  4. Volpatti LR, Yetisen AK. Commercialization of microfluidic devices. Trends Biotechnol. 2014;32:347–50.

    Article  CAS  PubMed  Google Scholar 

  5. Sueyoshi K, Kitagawa F, Otsuka K. Recent progress of online sample preconcentration techniques in microchip electrophoresis. J Sep Sci. 2008;31:2650–66.

    Article  CAS  PubMed  Google Scholar 

  6. Lin CC, Hsu JL, Lee GB. Sample preconcentration in microfluidic devices. Microfluid Nanofluid. 2011;10:481–511.

    Article  Google Scholar 

  7. Song S, Singh AK. On-chip sample preconcentration for integrated microfluidic analysis. Anal Bioanal Chem. 2006;384:41–3.

    Article  CAS  PubMed  Google Scholar 

  8. Stegehuis DS, Irthu H, Tjaden UR, Van Der Greef J. Isotachophoresis as an on-line concentration pretreatment technique in capillary electrophoresis. J Chromatogr A. 1991;538:393–402.

    Article  CAS  Google Scholar 

  9. Wainright A, Williams SJ, Ciambrone G, Xue Q, Wei J, Harris D. Sample pre-concentration by isotachophoresis in microfluidic devices. J Chromatogr A. 2002;979:69–80.

    Article  CAS  PubMed  Google Scholar 

  10. Rosenfeld T, Bercovici M. 1000-fold sample focusing on paper-based microfluidic devices. Lab Chip. 2014;14:4465–74.

    Article  CAS  PubMed  Google Scholar 

  11. Ramsey JD, Collins GE. Integrated microfluidic device for solid-phase extraction coupled to micellar electrokinetic chromatography separation. Anal Chem. 2005;77:6664–70.

    Article  CAS  PubMed  Google Scholar 

  12. Petersson M, Nilsson J, Wallman L, Laurell T, Johansson J, Nilsson S. Sample enrichment in a single levitated droplet for capillary electrophoresis. J Chromatogr B Biomed Appl. 1998:39–46.

  13. Neugebauer S, Evans SR, Aguilar ZP, Mosbach M, Fritsch I, Schuhmann W. Analysis in ultrasmall volumes: microdispensing of picoliter droplets and analysis without protection from evaporation. Anal Chem. 2004;76:458–63.

    Article  CAS  PubMed  Google Scholar 

  14. Shao F, Ng TW, Liew OW, Fu J, Sridhar T. Evaporative preconcentration and cryopreservation of fluorescent analytes using superhydrophobic surfaces. Soft Matter. 2012;8:3563.

    Article  CAS  Google Scholar 

  15. Walker GM, Beebe DJ. An evaporation-based microfluidic sample concentration method. Lab Chip. 2002;2:57–61.

    Article  CAS  PubMed  Google Scholar 

  16. Xu Q, Chen R, Wang H, Zhu X, Liao Q, He X. IR laser induced meniscus evaporation from a microchannel. Chem Eng Sci. 2015;130:31–40.

    Article  CAS  Google Scholar 

  17. Kachel S, Zhou Y, Scharfer P, Vrančić C, Petrich W, Schabel W. Evaporation from open microchannel grooves. Lab Chip. 2014;14:771–8.

    Article  CAS  PubMed  Google Scholar 

  18. Shao F, Ng TW, Lye JKK, Liew OW. Evaporative preconcentration of fluorescent protein samples in capillary based microplates. J Fluoresc. 2011;21:1835–9.

    Article  CAS  PubMed  Google Scholar 

  19. Cortez J, Pasquini C. Ring-oven based preconcentration technique for microanalysis: simultaneous determination of Na, Fe, and Cu in fuel ethanol by laser induced breakdown spectroscopy. Anal Chem. 2013;85:1547–54.

    Article  CAS  PubMed  Google Scholar 

  20. Villa JEL, Pasquini C, Poppi RJ. Coupling of the ring-oven-based preconcentration technique and surface-enhanced Raman spectroscopy: application for the determination of purine bases in DNA. Anal Chim Acta. 2017;991:95–103.

    Article  CAS  PubMed  Google Scholar 

  21. Wong SY, Cabodi M, Rolland J, Klapperich CM. Evaporative concentration on a paper-based device to concentrate analytes in a biological fluid. Anal Chem. 2014;86:11981–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Syms R. Rapid evaporation-driven chemical pre-concentration and separation on paper. Biomicrofluidics. 2017;11:044116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xu W, Wu LL, Li GP, Bachman M. A Vapor Based microfluidic sample concentrator. In: 14th Int. Conf Miniaturized Syst Chem Life Sci, 2010.

  24. Choi J-W, Hosseini Hashemi SM, Erickson D, Psaltis D. A micropillar array for sample concentration via in-plane evaporation. Biomicrofluidics. 2014;8:044108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Constantinou A, Ghiotto F, Lam KF, Gavriilidis A. Stripping of acetone from water with microfabricated and membrane gas–liquid contactors. Analyst. 2014;139:266–72.

    Article  CAS  PubMed  Google Scholar 

  26. Cvetković BZ, Lade O, Marra L, Arima V, Rinaldi R, Dittrich PS. Nitrogen supported solvent evaporation using continuous-flow microfluidics. RSC Adv. 2012;2:11117.

    Article  CAS  Google Scholar 

  27. Casadevall i Solvas X, Turek V, Prodromakis T, Edel JB. Microfluidic evaporator for on-chip sample concentration. Lab Chip. 2012;12:4049.

    Article  CAS  PubMed  Google Scholar 

  28. Timmer BH, van Delft KM, Olthuis W, Bergveld P, van den Berg A. Micro-evaporation electrolyte concentrator. Sensors Actuators B. 2003;91:342–6.

    Article  CAS  Google Scholar 

  29. Sharma NR, Lukyanov A, Bardell RL, Seifried L, Shen M. Development of an evaporation-based microfluidic sample concentrator. Proc. SPIE 6886, Microfluid. BioMEMS, Med. Microsystems VI. 2008:68860R.

  30. Zhang JY, Do J, Premasiri WR, Ziegler LD, Klapperich CM. Rapid point-of-care concentration of bacteria in a disposable microfluidic device using meniscus dragging effect. Lab Chip. 2010;10:3265–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang J, Mahalanabis M, Liu L, Chang J, Pollock N, Klapperich C. A disposable microfluidic virus concentration device based on evaporation and interfacial tension. Diagnostics. 2013;3:155–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tseng W-Y, van Dam RM. Compact microfluidic device for rapid concentration of PET tracers. Lab Chip. 2014;14:2293–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fornells E, Barnett B, Bailey M, Shellie RA, Hilder EF, Breadmore MC. Membrane assisted and temperature controlled on-line evaporative concentration for microfluidics. J Chromatogr A. 2017;1486:110–6.

    Article  CAS  PubMed  Google Scholar 

  34. Bishop EJ, Mitra S. Hollow fiber membrane concentrator for on-line preconcentration. J Chromatogr A. 2004;1046:11–7.

    Article  CAS  PubMed  Google Scholar 

  35. Takeuchi M, Dasgupta PK, Dyke JV, Srinivasan K. Postcolumn concentration in liquid chromatography. On-line eluent evaporation and analyte postconcentration in ion chromatography. Anal Chem. 2007;79:5690–7.

    Article  CAS  PubMed  Google Scholar 

  36. Gethard K, Mitra S. Membrane distillation as an online concentration technique: application to the determination of pharmaceutical residues in natural waters. Anal Bioanal Chem. 2011;400:571–5.

    Article  CAS  PubMed  Google Scholar 

  37. Gethard K, Mitra S. Carbon nanotube enhanced membrane distillation for online preconcentration of trace pharmaceuticals in polar solvents. Analyst. 2011;136:2643–8.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang H, Tiggelaar RM, Schlautmann S, Bart J, Gardeniers H. In-line sample concentration by evaporation through porous hollow fibers and micromachined membranes embedded in microfluidic devices. Electrophoresis. 2016;37:463–71.

    Article  CAS  PubMed  Google Scholar 

  39. Bendahl L, Gammelgaard B. Sample introduction systems for reversed phase LC-ICP-MS of selenium using large amounts of methanol—comparison of systems based on membrane desolvation, a spray chamber and direct injection. J Anal At Spectrom. 2005;20:410–6.

    Article  CAS  Google Scholar 

  40. Møller LH, Jensen CS, Nguyen TTTN, Stürup S, Gammelgaard B. Evaluation of a membrane desolvator for LC-ICP-MS analysis of selenium and platinum species for application to peptides and proteins. J Anal At Spectrom. 2015;30:277–84.

    Article  CAS  Google Scholar 

  41. Kahen K, Jorabchi K, Montaser A. Desolvation-induced non-linearity in the analysis of bromine using an ultrasonic nebulizer with membrane desolvation and inductively coupled plasma mass spectrometry. J Anal At Spectrom. 2006;21:588.

    Article  CAS  Google Scholar 

  42. Eijkel JCT, Bomer JG, Van Den Berg A. Osmosis and pervaporation in polyimide submicron microfluidic channel structures. Appl Phys Lett. 2005;87:85–8.

    Article  CAS  Google Scholar 

  43. Puleo CM, Wang T-H. Microfluidic means of achieving attomolar detection limits with molecular beacon probes. Lab Chip. 2009;9:1065–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee J, Kim M, Park J, Kim T. Self-assembled particle membranes for in situ concentration and chemostat-like cultivation of microorganisms on a chip. Lab Chip. 2016;16:1072–80.

    Article  CAS  PubMed  Google Scholar 

  45. He M, Sun C, Chiu DT. Concentrating solutes and nanoparticles within individual aqueous microdroplets. Anal Chem. 2004;76:1222–7.

    Article  CAS  PubMed  Google Scholar 

  46. Bajpayee A, Edd JF, Chang A, Toner M. Concentration of glycerol in aqueous microdroplets by selective removal of water. Anal Chem. 2010;82:1288–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fukuyama M, Hibara A. Microfluidic selective concentration of microdroplet contents by spontaneous emulsification. Anal Chem. 2015;87:3562–5.

    Article  CAS  PubMed  Google Scholar 

  48. Ji J, Nie L, Li Y, Yang P, Liu B. Simultaneous online enrichment and identification of trace species based on microfluidic droplets. Anal Chem. 2013;85:9617–22.

    Article  CAS  PubMed  Google Scholar 

  49. Erbil HY. Evaporation of pure liquid sessile and spherical suspended drops: a review. Adv Colloid Interf Sci. 2012;170:67–86.

    Article  CAS  Google Scholar 

  50. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA. Capillary flow as the cause of ring stains from dried liquid drops. Nature. 1997;389:827–9.

    Article  CAS  Google Scholar 

  51. Dash S, Garimella SV. Droplet evaporation on heated hydrophobic and superhydrophobic surfaces. Phys Rev E - Stat Nonlinear Soft Matter Phys. 2014;89:042402.

    Article  CAS  Google Scholar 

  52. Lye JKK, Ng TW, Neild A, Liew OW. A capacity for mixing in capillary wells for microplates. Anal Biochem. 2011;410:152–4.

    Article  CAS  PubMed  Google Scholar 

  53. Weisz H. Microanalysis by the ring oven technique. International Series of Monographs in Analytical Chemistry, Pergamon Press, 1970.

  54. Weisz H. Recent applications of the ring-oven technique. A brief review. Anal Chim Acta. 1987;202:25–34.

    Article  CAS  Google Scholar 

  55. Xu W, Xue H, Bachman M, Li GP. Virtual walls in microchannels. Annu. Int. Conf. IEEE Eng Med Biol. – Proc, 2006: 2840–2843.

  56. Zhao B, Moore JS, Beebe DJ. Surface-directed liquid flow inside microchannels. Science. 2001;291:1023–6.

    Article  CAS  PubMed  Google Scholar 

  57. Huebner A, Bratton D, Whyte G, Yang M, Demello AJ, Abell C, et al. Static microdroplet arrays: a microfluidic device for droplet trapping, incubation and release for enzymatic and cell-based assays. Lab Chip. 2009;9:692–8.

    Article  CAS  PubMed  Google Scholar 

  58. Bruce Stewart H, Wendroff B. Two-phase flow: models and methods. J Comput Phys. 1984;56:363–409.

    Article  Google Scholar 

  59. Baroud CN, Willaime H. Multiphase flows in microfluidics. Comptes Rendus Phys. 2004;5:547–55.

    Article  CAS  Google Scholar 

  60. Zhao CX, Middelberg APJ. Two-phase microfluidic flows. Chem Eng Sci. 2011;66:1394–411.

    Article  CAS  Google Scholar 

  61. Günther A, Jensen KF. Multiphase microfluidics: from flow characteristics to chemical and materials synthesis. Lab Chip. 2006;6:1487–503.

    Article  PubMed  Google Scholar 

  62. Drioli E, Calabro V, Wu Y. Microporous membranes in membrane distillation. Pure Appl Chem. 1986;58:1657–1662.

  63. Alkhudhiri A, Darwish N, Hilal N. Membrane distillation: a comprehensive review. Desalination. 2012;287:2–18.

    Article  CAS  Google Scholar 

  64. Jani JM, Wessling M, Lammertink RGH. A microgrooved membrane based gas-liquid contactor. Microfluid Nanofluid. 2012;13:499–509.

    Article  CAS  Google Scholar 

  65. Lautenschleger A, Kenig EY, Voigt A, Sundmacher K. Model-based analysis of a gas/vapor-liquid microchannel membrane contactor. AICHE J. 2015;61:2240–56.

    Article  CAS  Google Scholar 

  66. Chao PH, Collins J, Argus JP, Tseng W-Y, Lee JT, Michael van Dam R. Automatic concentration and reformulation of PET tracers via microfluidic membrane distillation. Lab Chip. 2017;17:1802–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. de Jong J, Ankoné B, Lammertink RGH, Wessling M. New replication technique for the fabrication of thin polymeric microfluidic devices with tunable porosity. Lab Chip. 2005;5:1240–7.

    Article  CAS  PubMed  Google Scholar 

  68. de Jong J, Geerken MJ, Lammertink RGH, Wessling M. Porous microfluidic devices—fabrication and applications. Chem Eng Technol. 2007;30:309–15.

    Article  CAS  Google Scholar 

  69. Leman M, Abouakil F, Griffiths AD, Tabeling P. Droplet-based microfluidics at the femtolitre scale. Lab Chip. 2015;15:753–65.

    Article  CAS  PubMed  Google Scholar 

  70. Zhu P, Wang L. Passive and active droplet generation with microfluidics: a review. Lab Chip. 2017;17:34–75.

    Article  CAS  Google Scholar 

  71. Eslami F, Elliott J a W. Stability analysis of microdrops during concentrating processes. J Phys Chem B. 2014;118:3630–41.

    Article  CAS  PubMed  Google Scholar 

  72. Eslami F, Elliott JAW. Design of microdrop concentrating processes. J Phys Chem B. 2013;117:2205–14.

    Article  CAS  PubMed  Google Scholar 

  73. Jeffries GDM, Kuo JS, Chiu DT. Dynamic modulation of chemical concentration in an aqueous droplet. Angew Chem Int Ed. 2007;46:1326–8.

    Article  CAS  Google Scholar 

  74. Shen AQ, Wang D, Spicer PT. Kinetics of colloidal templating using emulsion drop consolidation. Langmuir. 2007;23:12821–6.

    Article  CAS  PubMed  Google Scholar 

  75. Lin S, Nejati S, Boo C, Hu Y, Osuji CO, Elimelech M. Omniphobic membrane for robust membrane distillation. Environ Sci Technol Lett. 2014;1:443–7.

    Article  CAS  Google Scholar 

  76. Rezaei M, Warsinger DM, Lienhard V JH, Samhaber WM. Wetting prevention in membrane distillation through superhydrophobicity and recharging an air layer on the membrane surface. J Membr Sci. 2017;530:42–52.

    Article  CAS  Google Scholar 

  77. Singh AK, Ko DH, Vishwakarma NK, Jang S, Min KI, Kim DP. Micro-total envelope system with silicon nanowire separator for safe carcinogenic chemistry. Nat Commun. 2016;7:10741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was conducted by the Australian Research Council (ARC) Training Centre for Portable Analytical Separation Technologies (IC140100022). Support from the University of Tasmania, University of South Australia and Trajan Scientific and Medical is gratefully acknowledged.

Funding

MCB is a recipient of an ARC Future Fellowship (FT130100101). EFV is a recipient of an ARC ICHDR scholarship and an International Tuition Scholarship from the University of Tasmania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Breadmore.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fornells, E., Hilder, E.F. & Breadmore, M.C. Preconcentration by solvent removal: techniques and applications. Anal Bioanal Chem 411, 1715–1727 (2019). https://doi.org/10.1007/s00216-018-1530-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1530-8

Keywords

Navigation