Skip to main content
Log in

Normal-phase liquid chromatography retention behavior of polycyclic aromatic sulfur heterocycles and alkyl-substituted polycyclic aromatic sulfur heterocycle isomers on an aminopropyl stationary phase

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Retention indices for 67 polycyclic aromatic sulfur heterocycles (PASHs) and 80 alkyl-substituted PASHs were determined using normal-phase liquid chromatography (NPLC) on an aminopropyl (NH2) stationary phase. The retention behavior of PASH on the NH2 phase is correlated with the number of aromatic carbon atoms and two structural characteristics have a significant influence on their retention: non-planarity (thickness, T) and the position of the sulfur atom in the bay-region of the structure. Correlations between solute retention on the NH2 phase and T of PASHs were investigated for three cata-condensed (cata-) PASH isomer groups: (a) 13 four-ring molecular mass (MM) 234 Da cata-PASHs, (b) 20 five-ring MM 284 Da cata-PASHs, and (c) 12 six-ring MM 334 Da cata-PASHs. Correlation coefficients ranged from r = −0.49 (MM 234 Da) to r = −0.65 (MM 334 Da), which were significantly lower than structurally similar PAH isomer groups (r = −0.70 to r = −0.99). The NPLC retention behavior of the PASHs are compared to similar results for PAHs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Canha N, Lopes I, Vicente ED, Vicente AM, Bandowe BAM, Almeida SM, et al. Mutagenicity assessment of aerosols in emissions from domestic combustion processes. Environ Sci and Pollut Res. 2016;23(11):10799–807. https://doi.org/10.1007/s11356-016-6292-2.

    Article  CAS  Google Scholar 

  2. de Souza MR, da Silva FR, de Souza CT, Niekraszewicz L, Dias JF, Premoli S, et al. Evaluation of the genotoxic potential of soil contaminated with mineral coal tailings on snail helix aspersa. Chemosphere. 2015;139:512–7. https://doi.org/10.1016/j.chemosphere.2015.07.071.

    Article  Google Scholar 

  3. Olson GM, Meyer BM, Portier RJ. Assessment of the toxic potential of polycyclic aromatic hydrocarbons (PAHs) affecting gulf menhaden (brevoortia patronus) harvested from waters impacted by the BP Deepwater horizon spill. Chemosphere. 2016;145:322–8. https://doi.org/10.1016/j.chemosphere.2015.11.087.

    Article  CAS  Google Scholar 

  4. Pelroy RA, Stewart DL, Tominaga Y, Iwao M, Castle RN, Lee ML. Microbial mutagenicity of 3- and 4-ring polycyclic aromatic sulfur heterocycles. Mutat Res Gen Toxicol. 1983;117(1):31–40. https://doi.org/10.1016/0165-1218(83)90150-7.

    Article  CAS  Google Scholar 

  5. McFall T, Booth GM, Lee ML, Tominaga Y, Pratap R, Tedjamulia M, et al. Mutagenic activity of methyl-substituted tri-and tetracyclic aromatic sulfur heterocycles. Mutat Res Gen Toxicol. 1984;135(2):97–103. https://doi.org/10.1016/0165-1218(84)90161-7.

  6. Swartz CD, King LC, Nesnow S, Umbach DM, Kumar S, DeMarini DM. Mutagenicity, stable DNA adducts, and abasic sites induced in salmonella by phenanthro[3,4-b]- and phenanthro [4,3-b]thiophenes, sulfur analogs of benzo[c]phenanthrene. Mutat Res-Fundam Mol Mech Mutagen. 2009;661(1–2):47–56. https://doi.org/10.1016/j.mrfmmm.2008.11.001.

    Article  CAS  Google Scholar 

  7. Eisentraeger A, Brinkmann C, Hollert H, Sagner A, Tiehm A, Neuwoehner J. Heterocyclic compounds: toxic effects using algae, daphnids, and the salmonella/microsome test taking methodical quantitative aspects into account. Environ Toxicol Chem. 2008;27(7):1590–6. https://doi.org/10.1897/07-201.1.

    Article  CAS  Google Scholar 

  8. Ona-Ruales JO, Ruiz-Morales Y, Wise SA. Identification and quantification of seven fused aromatic rings C26H14 peri-condensed benzenoid polycyclic aromatic hydrocarbons in a complex mixture of polycyclic aromatic hydrocarbons from coal tar. J Chromatogr A. 2016;1442:83–93. https://doi.org/10.1016/j.chroma.2016.02.082.

    Article  CAS  Google Scholar 

  9. Nalin F, Sander LC, Wilson WB, Wise SA. Gas chromatographic retention behavior of polycyclic aromatic hydrocarbons (PAHs) and alkyl-substituted PAHs on two stationary phases of different selectivity. Anal Bioanal Chem. https://doi.org/10.1007/s00216-017-0700-4.

  10. Wilson WB, Hayes HV, Sander LC, Campiglia AD, Wise SA. Qualitative characterization of SRM 1597a coal tar for polycyclic aromatic hydrocarbons and methyl-substituted derivatives via normal-phase liquid chromatography and gas chromatography/mass spectormetry. Anal Bioanal Chem. 2017;409:5171–83. https://doi.org/10.1007/s00216-017-0464-x.

    Article  CAS  Google Scholar 

  11. Wise SA, Poster DL, Leigh SD, Rimmer CA, Mossner S, Schubert P, et al. Polycyclic aromatic hydrocarbons (PAHs) in a coal tar standard reference material-SRM 1597a updated. Anal Bioanal Chem. 2010;398(2):717–28. https://doi.org/10.1007/s00216-010-4008-x.

    Article  CAS  Google Scholar 

  12. Studabaker WB, Puckett KJ, Percy KE, Landis MS. Determination of polycyclic aromatic hydrocarbons, dibenzothiophene, and alkylated homologs in the lichen hypogymnia physodes by gas chromatography using single quadrupole mass spectrometry and time-of-flight mass spectrometry. J Chromatogr A. 2017;1492:106–16. https://doi.org/10.1016/j.chroma.2017.02.051.

    Article  CAS  Google Scholar 

  13. Brinkhaus SG, Thianer JB, Achten C. Ultra-high sensitive PAH analysis of certified reference materials and environmental samples by GC-APLI-MS. Anal Bioanal Chem. 2017;409(11):2801–12. https://doi.org/10.1007/s00216-017-0224-y.

    Article  Google Scholar 

  14. Benigni P, DeBord JD, Thompson CJ, Gardinali P, Fernandez-Lima F. Increasing polyaromatic hydrocarbon (PAH) molecular coverage during fossil oil analysis by combining gas chromatography and atmospheric-pressure laser ionization fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Energy Fuel. 2016;30(1):196–203. https://doi.org/10.1021/acs.energyfuels.5b02292.

    Article  CAS  Google Scholar 

  15. Mössner SG, Wise SA. Determination of polycyclic aromatic sulfur heterocycles in fossil fuel-related samples. Anal Chem. 1999;71(1):58–69. https://doi.org/10.1021/ac980664f.

    Article  Google Scholar 

  16. Hegazi AH, Andersson JT, El-Gayar MS. Application of gas chromatography with atomic emission detection to the geochemical. Investigation of polycyclic aromatic sulfur heterocycles in egyptian crude oils. Fuel Process Technol. 2004;85(1):1–19. https://doi.org/10.1016/s0378-3820(03)00093-6.

    Article  CAS  Google Scholar 

  17. Schmid B, Andersson JT. Critical examination of the quantification of aromatic compounds in three standard reference materials. Anal Chem. 1997;69(17):3476–81. https://doi.org/10.1021/ac970194+.

    Article  CAS  Google Scholar 

  18. Machado ME, Bregles LP, de Menezes EW, Caramao EB, Benvenutti EV, Zini CA. Comparison between pre-fractionation and fractionation process of heavy gas oil for determination of sulfur compounds using comprehensive two-dimensional gas chromatography. J Chromatogr A. 2013;1274:165–72. https://doi.org/10.1016/j.chroma.2012.12.002.

    Article  CAS  Google Scholar 

  19. Yang C, Zhang G, Wang ZD, Yang ZY, Hollebone B, Landriault M, et al. Development of a methodology for accurate quantitation of alkylated polycyclic aromatic hydrocarbons in petroleum and oil contaminated environmental samples. Anal Methods. 2014;6(19):7760–71. https://doi.org/10.1039/c4ay01393j.

    Article  CAS  Google Scholar 

  20. Wilson WB, Sander LC, Ona-Ruales JO, Mossner SG, Sidisky LM, Lee ML, et al. Retention behavior of isomeric polycyclic aromatic sulfur heterocycles in gas chromatography on stationary phases of different selectivity. J Chromatogr A. 2017;1485:120–30. https://doi.org/10.1016/j.chroma.2017.01.024.

    Article  CAS  Google Scholar 

  21. Wise SA, Sander LC, Schantz MM. Analytical methods for determination of polycyclic aromatic hydrocarbons (PAHs) – a historical perspective on the 16 U.S. EPA priority pollutant PAHs. Poly Aromat Cmpds. 2015;36(1):1–61. https://doi.org/10.1080/10406638.2014.970291.

    Google Scholar 

  22. Wilson WB, Sander LC, de Alda ML, Lee ML, Wise SA. Retention behavior of isomeric polycyclic aromatic sulfur heterocycles in reversed-phase liquid chromatography. J Chromatogr A. 2016;1461:107–19. https://doi.org/10.1016/j.chroma.2016.07.064.

    Article  CAS  Google Scholar 

  23. Wilson WB, Sander LC, de Alda ML, Lee ML, Wise SA. Retention behavior behavior of alkyl-substituted polycyclic aromatic sulfur heterocycles in reversed-phase liquid chromatography. J Chromatogr A. 2016;1461:120–30. https://doi.org/10.1016/j.chroma.2016.07.065.

    Article  CAS  Google Scholar 

  24. Fang ML, Getzinger GJ, Cooper EM, Clark BW, Garner LVT, Di Giulio RT, et al. Effect-directed analysis of Elizabeth River porewater: developmental toxicity in zebrafish (danio rerio). Environ Toxicol Chem. 2014;33(12):2767–74. https://doi.org/10.1002/etc.2738.

    Article  CAS  Google Scholar 

  25. Gilgenast E, Boczkaj G, Przyjazny A, Kaminski M. Sample preparation procedure for the determination of polycyclic aromatic hydrocarbons in petroleum vacuum residue and bitumen. Anal Bioanal Chem. 2011;401(3):1059–69. https://doi.org/10.1007/s00216-011-5134-9.

    Article  CAS  Google Scholar 

  26. Marvin CH, McCarry BE, Lundrigan JA, Roberts K, Bryant DW. Bioassay-directed fractionation of PAH of molecular mass 302 in coal tar-contaminated sediment. Sci Total Environ. 1999;231(2–3):135–44. https://doi.org/10.1016/s0048-9697(99)00096-0.

    Article  CAS  Google Scholar 

  27. Olsson P, Sadiktsis I, Holmback J, Westerholm R. Class separation of lipids and polycyclic aromatic hydrocarbons in normal phase high performance liquid chromatography - a prospect for analysis of aromatics in edible vegetable oils and biodiesel exhaust particulates. J Chromatogr A. 2014;1360:39–46. https://doi.org/10.1016/j.chroma.2014.07.064.

    Article  CAS  Google Scholar 

  28. Regueiro J, Matamoros V, Thibaut R, Porte C, Bayona JM. Use of effect-directed analysis for the identification of organic toxicants in surface flow constructed wetland sediments. Chemosphere. 2013;91(8):1165–75. https://doi.org/10.1016/j.chemosphere.2013.01.023.

    Article  CAS  Google Scholar 

  29. Wise SA, Chesler SN, Hertz HS, Hilpert LR, May WE. Chemically-bonded aminosilane stationary phase for high-performance liquid-chromatographic separation of polynuclear aromatic-compounds. Anal Chem. 1977;49(14):2306–10. https://doi.org/10.1021/ac50022a049.

    Article  CAS  Google Scholar 

  30. Wise SA, Benner BA, Chesler SN, Hilpert LR, Vogt CR, May WE. Characterization of the polycyclic aromatic-hydrocarbons from 2 standard reference material air particulate samples. Anal Chem. 1986;58(14):3067–77. https://doi.org/10.1021/ac00127a036.

    Article  CAS  Google Scholar 

  31. Lubcke-von Varel U, Streck G, Brack W. Automated fractionation procedure for polycyclic aromatic compounds in sediment extracts on three coupled normal-phase high-performance liquid chromatography columns. J Chromatogr A. 2008;1185(1):31–42. https://doi.org/10.1016/j.chroma.2008.01.055.

    Article  Google Scholar 

  32. Pyell U, Schober S, Stork G. Ligand-exchange chromatographic separation of polycyclic aromatic hydrocarbons and polycyclic aromatic sulfur heterocycles on a chelating silica gel loaded with palladium (ii) or silver (i) cations. Fresenius J Anal Chem. 1997;359(7–8):538–41. https://doi.org/10.1007/s002160050628.

    Article  CAS  Google Scholar 

  33. Wilson WB, Hayes HV, Sander LC, Campiglia AD, Wise SA. Normal-phase liquid chromatography retention behavior of polycyclic aromatic hydrocarbons and their methyl-substituted derivatives on an aminopropyl stationary phase. Anal Bioanal Chem. 2017;409(22):5291–305. https://doi.org/10.1007/s00216-017-0474-8.

    Article  CAS  Google Scholar 

  34. Wise SA, Campbell RM, May WE, Lee ML, Castle RN. In: Cooke M, Dennis AJ, editors. Polynuclear aromatic hydrocarbons. Seventh international symposium. Battelle press; 1983. p. 1247–66.

    Google Scholar 

  35. Panda SK, Schrader W, Andersson JT. B-Cyclodextrin as a stationary phase for the group separation of polycyclic aromatic compounds in normal-phase liquid chromatography. J Chromatogr A. 2006;1122:88–96.

    Article  CAS  Google Scholar 

  36. Miller MJ, Miller JC. Statistics and chemometrics for analytical chemistry. 6th ed. New York: Prentice-Hall, Inc.; 2000.

    Google Scholar 

Download references

Acknowledgements

H. V. Hayes and A. D. Campiglia acknowledge financial support from The Gulf of Mexico Research Initiative (Grant 231617-00). The views expressed are those of the authors and do not necessarily reflect the view of this organization or NIST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter B. Wilson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Disclaimer

Certain commercial equipment or materials are identified in this paper to specify adequately the experimental procedure. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

Electronic supplementary material

ESM 1

(PDF 832 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, W.B., Hayes, H.V., Sander, L.C. et al. Normal-phase liquid chromatography retention behavior of polycyclic aromatic sulfur heterocycles and alkyl-substituted polycyclic aromatic sulfur heterocycle isomers on an aminopropyl stationary phase. Anal Bioanal Chem 410, 1511–1524 (2018). https://doi.org/10.1007/s00216-017-0795-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0795-7

Keywords

Navigation