Skip to main content
Log in

Elemental quantitation of carbon via production of polyatomic anions in gas chromatography-plasma assisted reaction chemical ionization mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Elemental mass spectrometry offers quantitation and isotopic analysis without the need for compound-specific standards. We have recently introduced plasma assisted reaction chemical ionization (PARCI) as an efficient elemental ionization method for halogens. Here, we report a new ionization chemistry in PARCI for facile quantitation of elemental carbon in gas chromatography eluates. We demonstrate that in-plasma reactions of organic compounds followed by afterglow ionization lead to formation of polyatomic anions (CN, OCN, and CO3 ), among which CN offers the best analytical sensitivity with a detection limit of ~25 pg (21 pg/s) carbon on column. Using a mixture of pesticides with wide variations in structures and heteroatom content, we demonstrate that CN ion response is quantitatively correlated with the carbon concentration over two orders of magnitude (r 2 = 0.985). We show that the novel GC-PARCI-MS method provides recoveries within 80–120% using a single standard for all analytes, highlighting the strength of elemental quantitation. Further, the ability of GC-PARCI-MS to identify 13C-tagged molecules without a priori knowledge of chemical formulas of analytes is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Richardson SD, Kimura SY. Water analysis: emerging contaminants and current issues. Anal Chem. 2016;88:546–82.

    Article  CAS  Google Scholar 

  2. Bletsou AA, Jeon J, Hollender J, Archontaki E, Thomaidis NS. Targeted and non-targeted liquid chromatography-mass spectrometric workflows for identification of transformation products of emerging pollutants in the aquatic environment. Trends Anal Chem. 2015;66:32–44.

    Article  CAS  Google Scholar 

  3. Chokkathukalam A, Kim DH, Barrett MP, Breitling R, Creek DJ. Stable isotope-labeling studies in metabolomics: new insights into structure and dynamics of metabolic networks. Bioanalysis. 2014;6:511–24.

    Article  CAS  Google Scholar 

  4. Holm T. Aspects of the mechanism of the flame ionization detector. J Chromatogr A. 1999;842:221–7.

    Article  CAS  Google Scholar 

  5. Van Stee LLR, Brinkman UAT. Developments in the application of gas chromatography with atomic emission (plus mass spectrometric) detection. J Chromatogr A. 2008;1186:109–22.

    Article  CAS  Google Scholar 

  6. Han BJ, Jiang XM, Hou XD, Zheng CB. Dielectric barrier discharge carbon atomic emission spectrometer: universal GC detector for volatile carbon-containing compounds. Anal Chem. 2014;86:936–42.

    Article  CAS  Google Scholar 

  7. Brandt S, Schütz A, Klute F, Kratzer J, Franzke J. Dielectric barrier discharges applied for optical spectrometry. Spectrochim Acta B. 2016;123:6–32.

    Article  CAS  Google Scholar 

  8. Li CH, Long Z, Jiang XM, Wu P, Hou XD. Atomic spectrometric detectors for gas chromatography. Trends Anal Chem. 2016;77:139–55.

    Article  CAS  Google Scholar 

  9. Guchardi R, Hauser PC. Determination of organic compounds by gas chromatography using a new capacitively coupled microplasma detector. Analyst. 2004;129:347–51.

    Article  CAS  Google Scholar 

  10. Diaz SC, Encinar JR, Sanz-Medel A, Alonso JIG. A quantitative universal detection system for organic compounds in gas chromatography with isotopically enriched (CO2)-C-13. Angew Chem Int Ed. 2009;48:2561–4.

    Article  Google Scholar 

  11. Diaz SC, Encinar JR, Sanz-Medel A, Alonso JIG. Gas chromatography-combustion-mass spectrometry with postcolumn isotope dilution for compound-independent quantification: its potential to assess HS-SPME procedures. Anal Chem. 2010;82:6862–9.

    Article  CAS  Google Scholar 

  12. Diaz SC, Encinar JR, Sanz-Medel A, Alonso JIG. Towards compound-independent calibration for organic compounds using online isotope dilution mass spectrometry. Anal Bioanal Chem. 2012;402:91–7.

    Article  CAS  Google Scholar 

  13. Song HC, Kusmierz J, Abramson F, Mclean M. Implementation of the chemical-reaction interface mass-spectrometry technique on a Hewlett-Packard mass-selective detector. J Am Soc Mass Spectrom. 1994;5:765–71.

    Article  CAS  Google Scholar 

  14. McLean M, Vestal ML, Teffera Y, Abramson FP. Element- and isotope-specific detection for high-performance liquid chromatography using chemical reaction interface mass spectrometry. J Chromatogr A. 1996;732:189–99.

    Article  CAS  Google Scholar 

  15. Sobrado LA, Fernandez MR, Diaz SC, Encinar JR, Alonso JIG. Modification of a commercial gas chromatography isotope ratio mass spectrometer for on-line carbon isotope dilution: evaluation of its analytical characteristics for the quantification of organic compounds. J Chromatogr A. 2015;1419:99–108.

    Article  Google Scholar 

  16. Sobrado LA, Freije-Carrelo L, Moldovan M, Encinar JR, Alonso JIG. Comparison of gas chromatography-combustion-mass spectrometry and gas chromatography-flame ionization detector for the determination of fatty acid methyl esters in biodiesel without specific standards. J Chromatogr A. 2016;1457:134–43.

    Article  CAS  Google Scholar 

  17. Lin NH, Wang HP, Kahen K, Badiei H, Jorabchi K. Gas chromatography plasma-assisted reaction chemical ionization mass spectrometry for quantitative detection of bromine in organic compounds. Anal Chem. 2014;86:7954–61.

    Article  CAS  Google Scholar 

  18. Wang HP, Lin NH, Kahen K, Badiei H, Jorabchi K. Plasma-assisted reaction chemical ionization for elemental mass spectrometry of organohalogens. J Am Soc Mass Spectrom. 2014;25:692–5.

    Article  CAS  Google Scholar 

  19. Wang HP, Minardi CS, Badiei H, Kahen K, Jorabchi K. High-sensitivity elemental ionization for quantitative detection of halogenated compounds. Analyst. 2015;140:8177–85.

    Article  CAS  Google Scholar 

  20. Wenig P, Odermatt J. OpenChrom: a cross-platform open source software for the mass spectrometric analysis of chromatographic data. Bmc Bioinformatics. 2010;11:405.

    Article  Google Scholar 

  21. Gonzalez AM, Uden PC. Optimization and evaluation of atomic emission gas chromatographic detection for nitrogen using the 388 nm molecular emission spectral band. J Chromatogr A. 2000;898:201–10.

    Article  CAS  Google Scholar 

  22. Li CH, Jiang X, Hou XD. Dielectric barrier discharge molecular emission spectrometer as gas chromatographic detector for amines. Microchem J. 2015;119:108–13.

    Article  CAS  Google Scholar 

  23. Yuan X, Ding XL, Zhao ZJ, Zhan XF, Duan YX. Performance evaluation of a newly designed DC microplasma for direct organic compound detection through molecular emission spectrometry. J Anal At Spectrom. 2012;27:2094–101.

    Article  CAS  Google Scholar 

  24. Dong M, Chan GC-Y, Mao X, Gonzalez JJ, Lu J, Russo RE. Elucidation of C 2 and CN formation mechanisms in laser-induced plasmas through correlation analysis of carbon isotopic ratio. Spectrochim Acta Part B. 2014;100:62–9.

    Article  CAS  Google Scholar 

  25. Braman RS, Dynako A. Direct current discharge spectral emission-type detector. Anal Chem. 1968;40:95–106.

    Article  CAS  Google Scholar 

  26. Unkefer CJ, Martinez RA. The use of stable isotope labelling for the analytical chemistry of drugs. Drug Test Anal. 2012;4:303–7.

    Article  CAS  Google Scholar 

  27. Fenner K, Canonica S, Wackett LP, Elsner M. Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science. 2013;341:752–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation (NSF) under CHE-1507304. We thank PerkinElmer Inc. for the loan of the mass spectrometers and for financial support. We are grateful to Dr. Hamid Badiei of PerkinElmer for discussions during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaveh Jorabchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 315 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haferl, P.J., Zheng, K., Wang, H. et al. Elemental quantitation of carbon via production of polyatomic anions in gas chromatography-plasma assisted reaction chemical ionization mass spectrometry. Anal Bioanal Chem 409, 3843–3851 (2017). https://doi.org/10.1007/s00216-017-0328-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0328-4

Keywords

Navigation