Skip to main content

Advertisement

Log in

Amplification-free detection of microRNAs via a rapid microarray-based sandwich assay

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The detection and profiling of microRNAs are of great interest in disease diagnosis and prognosis. In this paper, we present a method for the rapid amplification-free detection of microRNAs from total RNA samples. In a two-step sandwich assay approach, fluorescently labeled reporter probes were first hybridized with their corresponding target microRNAs. The reaction mix was then added to a microarray to enable their specific capture and detection. Reporter probes were Tm equalized, enabling specificity by adjusting the length of the capture probe while maintaining the stabilizing effect brought about by coaxial base stacking. The optimized assay can specifically detect microRNAs in spiked samples at concentrations as low as 1 pM and from as little as 100 ng of total RNA in 2 h. The detection signal was linear between 1 and 100 pM (R2 = 0.99). Our assay data correlated well with results generated by qPCR when we profiled a select number of breast cancer related microRNAs in a total RNA sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15(8):509–24.

  2. Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010;466(7308):835–40.

  3. Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. a comprehensive review. EMBO Mol Med. 2012;4(3):143.

  4. Price C, Chen J. MicroRNAs in cancer biology and therapy: current status and perspectives. Genes Dis. 2014;1(1):53–63.

  5. Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating MicroRNA. Nucleic Acids Res. 2011;1;39(16):7223-33

  6. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci. 2011;108(12):5003–8.

  7. Zhang J, Li S, Li L, Li M, Guo C, Yao J. Exosome and exosomal microRNA: trafficking, sorting, and function. Genom Proteom Bioinform. 2015;13(1):17–24.

  8. Creemers EE, Tijsen AJ, Pinto YM. Circulating microRNAs: Novel biomarkers and extracellular communicators in cardiovascular disease? 2012;110(3):483–495

  9. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005;33(20):e179.

  10. Creighton CJ, Reid JG, Gunaratne PH. Expression profiling of microRNAs by deep sequencing. Brief Bioinform. 2009;10(5):490–7.

  11. Barad O, Meiri E, Avniel A, Aharonov R, Barzilai A, Bentwich I. MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Res. 2004;14(12):2486–94.

  12. Liu C-G, Calin GA, Volinia S, Croce CM. MicroRNA expression profiling using microarrays. Nat Protoc. 2008;3(4):563–78.

  13. Wark AW, Lee HJ, Corn RM. Multiplexed detection methods for profiling micorRNA expression in biological samples. Angew Chem Int Ed. 2008;47(4):644–52.

  14. Ragan C, Zuker M, Ragan MA. Quantitative prediction of miRNA–mRNA interaction based on equilibrium concentrations. PLoS Comput Biol. 2011;7(2):e1001090.

    Article  CAS  Google Scholar 

  15. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci. 2008;105(30):10513–8.

  16. Lodes MJ, Caraballo M, Suciu D, Munro S, Kumar A, Anderson B. Detection of cancer with serum miRNAs on an oligonucleotide microarray. PLoS ONE. 2009;4(7):e6229.

    Article  Google Scholar 

  17. Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X. MicroRNA: function, detection, and bioanalysis. Chem Rev. 2013;113(8):6207–33.

  18. Tran HV, Piro B, Reisberg S, Tran LD, Duc HT, Pham MC. Label-free and reagentless electrochemical detection of microRNAs using a conducting polymer nanostructured by carbon nanotubes: application to prostate cancer biomarker miR-141. Bios Bioelectron. 2013;49:164–9.

  19. Hong C-Y, Chen X, Liu T, Li J, Yang H-H, Chen J-H. Ultrasensitive electrochemical detection of cancer-associated circulating microRNA in serum samples based on DNA concatamers. Biosens Bioelectron. 2013;50:132–6.

  20. Šípová H, Zhang S, Dudley AM, Galas D, Wang K, Homola J. Surface plasmon resonance biosensor for rapid label-free detection of microribonucleic acid at subfemtomole level. Anal Chem. 2010;82(24):10110–5.

    Article  Google Scholar 

  21. Driskell JD, Seto AG, Jones LP, Jokela S, Dluhy RA, Zhao YP. Rapid microRNA (miRNA) detection and classification via surface-enhanced Raman spectroscopy (SERS). Biosens Bioelectron. 2008;24(4):917–22.

  22. Wang Y, Zheng D, Tan Q, Wang MX, Gu L-Q. Nanopore-based detection of circulating microRNAs in lung cancer patients. Nat Nano. 2011;6(10):668–74.

  23. He J, Zhu J, Gong C, Qi J, Xiao H, Jiang B. Label-free direct detection of miRNAs with poly-silicon nanowire biosensors. PLoS ONE. 2016;10(12):e0145160.

    Article  Google Scholar 

  24. Zhang G-J, Chua JH, Chee R-E, Agarwal A, Wong SM. Label-free direct detection of MiRNAs with silicon nanowire biosensors. Biosens Bioelectron. 2009;24(8):2504–8.

    Article  CAS  Google Scholar 

  25. Arata H, Komatsu H, Han A, Hosokawa K, Maeda M. Rapid microRNA detection using power-free microfluidic chip: coaxial stacking effect enhances the sandwich hybridization. Analyst. 2012;137(14):3234–7.

  26. Duan D, Zheng K-x, Shen Y, Cao R, Jiang L, Lu Z. Label-free high-throughput microRNA expression profiling from total RNA. Nucleic Acids Res. 2011; 39(22): e154.

  27. Ueno T, Funatsu T. Label-free quantification of microRNAs using ligase-assisted sandwich hybridization on a DNA microarray. PLoS ONE. 2014;9(3):e90920.

  28. Heneghan HM, Miller N, Lowery AJ, Sweeney KJ, Newell J, Kerin MJ. Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann Surg. 2010;251(3):499–505.

  29. Iorio MV, Ferracin M, Liu C-G, Veronese A, Spizzo R, Sabbioni S. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65(16):7065–70.

  30. Ng EKO, Li R, Shin VY, Jin HC, Leung CPH, Ma ESK. Circulating microRNAs as specific biomarkers for breast cancer detection. PLoS ONE. 2013;8(1):e53141.

  31. Mestdagh P, Hartmann N, Baeriswyl L, Andreasen D, Bernard N, Chen C. Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study. Nat Methods. 2014;11(8):809–15.

  32. Kelly H, Downing T, Tuite NL, Smith TJ, Kerin MJ, Dwyer RM. Cross platform standardisation of an experimental pipeline for use in the identification of dysregulated human circulating MiRNAs. PLoS ONE. 2015;10(9):e0137389.

  33. Satterfield BC, Caplan MR, West JAA. Tentacle probe sandwich assay in porous polymer monolith improves specificity, sensitivity and kinetics. Nucleic Acids Res. 2008;36(19):e129.

  34. Yakovchuk P, Protozanova E, Frank-Kamenetskii MD. Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res. 2006;34(2):564–74.

    Article  CAS  Google Scholar 

  35. Protozanova E, Yakovchuk P, Frank-Kamenetskii MD. Stacked–unstacked equilibrium at the nick site of DNA. J Mol Biol. 2004;342(3):775–85.

    Article  CAS  Google Scholar 

  36. Peterson AW, Heaton RJ, Georgiadis RM. The effect of surface probe density on DNA hybridization. Nucleic Acids Res. 2001;29(24):5163–8.

    Article  CAS  Google Scholar 

  37. Shchepinov MS, Case-Green SC, Southern EM. Steric factors influencing hybridisation of nucleic acids to oligonucleotide arrays. Nucleic Acids Res. 1997;25(6):1155–61.

  38. Rao AN, Grainger DW. Biophysical properties of nucleic acids at surfaces relevant to microarray performance. Biomat Sci. 2014;2(4):436–71.

    Article  CAS  Google Scholar 

  39. Sobek J, Aquino C, Weigel W, Schlapbach R. Drop drying on surfaces determines chemical reactivity—the specific case of immobilization of oligonucleotides on microarrays. BMC Biophys. 2013;6(1):1–14.

    Article  Google Scholar 

  40. Xing Y, Borguet E. Specificity and sensitivity of fluorescence labeling of surface species. Langmuir. 2007;23(2):684–8.

    Article  CAS  Google Scholar 

  41. Zhdanov VP. Conditions of appreciable influence of microRNA on a large number of target mRNAs. Molec Biosyst. 2009;5(6):638–43.

  42. Liu J, Williams BA, Gwirtz RM, Wold BJ, Quake S. Enhanced signals and fast nucleic acid hybridization by microfluidic chaotic mixing. Angew Chem Int Ed. 2006;45(22):3618–23.

    Article  CAS  Google Scholar 

  43. Schaupp CJ, Jiang G, Myers TG, Wilson MA. Active mixing during hybridization improves the accuracy and reproducibility of microarray results. BioTechniques. 2005;38(1):117–9.

    Article  CAS  Google Scholar 

  44. Arata H, Komatsu H, Hosokawa K, Maeda M. Rapid and sensitive miroRNA detection with laminar flow-assisted dendritic amplification on power-free microfluidic chip. PLoS ONE. 2012;7(e48329).

  45. Ameres SL, Zamore PD. Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol. 2013;14(8):475–88.

  46. Wang H, Ach RA, Curry B. Direct and sensitive miRNA profiling from low-input total RNA. RNA. 2006;13:1–9.

    Article  CAS  Google Scholar 

  47. Weber JA, Baxter DH, Zhang S, Huang DY, How Huang K, Jen Lee M. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56(11):1733–41.

Download references

Acknowledgements

This work was supported by Science Foundation Ireland as part of the Biomedical Diagnostics Institute Centre for Science Excellence and Technology (10/CE/B1821).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eoin Clancy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 128 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clancy, E., Burke, M., Arabkari, V. et al. Amplification-free detection of microRNAs via a rapid microarray-based sandwich assay. Anal Bioanal Chem 409, 3497–3505 (2017). https://doi.org/10.1007/s00216-017-0298-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0298-6

Keywords

Navigation