Skip to main content
Log in

Structural modifications of cellulose samples after dissolution into various solvent systems

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This work deals with the modifications resulting from the dissolution of four commercial cellulosic samples, with different crystallinity rates and degrees of polymerization (DPs), in four solvent systems, known and used to dissolve cellulose. The dissolution conditions were optimized for the 16 various systems and followed by turbidity measurements. After regeneration, the samples were analyzed by thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), and X-ray diffractometry (XRD) to study their modification. Viscosimetry measurements were used to evaluate the potential decrease of the DP after dissolution. The observed structural modifications established that, for low DP, all the solvent systems were efficient in dissolving the cellulose without altering the DP, except BMIM [Cl], which provoked a decrease of up to 40 % and a decrease of around 20 % of the degradation temperature (onset temperature, T o). For high molecular weight (MW) celluloses, DMSO/TBAF was the only system to allow a complete dissolution without any molar mass loss and degradation temperature modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhang S, Li FX, Yu J, Hsieh YL. Dissolution behaviour and solubility of cellulose in NaOH complex solution. Carbohydr Polym. 2010;81:668–74.

    Article  CAS  Google Scholar 

  2. Bodvik R, Dedinaite A, Karlson L, Bergström M, Bäverbäck P, Pedersen JS, et al. Aggregation and network formation of aqueous methylcellulose and hydroxypropylmethylcellulose solutions. Colloids Surf A. 2010;354:162–71.

    Article  CAS  Google Scholar 

  3. Glasser WG, Atalla RH, Blackwell B, Brown Jr RM, Burchard W, French AD, et al. About the structure of cellulose: debating the Lindman hypothesis. Cellulose. 2012;19:589–98.

    Article  CAS  Google Scholar 

  4. Medronho B, Lindman B. Brief overview on cellulose dissolution/regeneration interactions and mechanisms. Adv Colloid Interface Sci. 2015;222:502–8.

    Article  CAS  Google Scholar 

  5. Striegel AM. Theory and applications of DMAc/LiCl in the analysis of polysaccharides. Carbohydr Polym. 1997;34:267–74.

    Article  CAS  Google Scholar 

  6. Röder T, Morgenstern B, Schelosky N, Glatter O. Solutions of cellulose in N, N-dimethylacetamide/lithium chloride studied by light scattering methods. Polymer. 2001;16:6765–73.

    Article  Google Scholar 

  7. Dupont AL. Cellulose in lithium chloride/N, N-dimethylacetamide, optimisation of a dissolution method using paper substrates and stability of the solutions. Polymer. 2003;44:4117–26.

    Article  CAS  Google Scholar 

  8. Jing H, Zhu L, Hua-Yang L, Guo-Hua W, Jun-Wen P. Solubility of wood-cellulose in LiCl/DMAc solvent system. For Stud China. 2007;9:217–20.

    Article  Google Scholar 

  9. Heinze T, Dicke R, Koschella A, Kull AH, Klohr EA, Koch W. Effective preparation of cellulose derivatives in a new simple cellulose solvent. Macromol Chem Phys. 2000;201:627–31.

    Article  CAS  Google Scholar 

  10. Östlund Å, Lundberg D, Nordstierna L, Holmberg K, Nydén M. Dissolution and gelation of cellulose in TBAF/DMSO solutions: the roles of fluoride ions and water. Biomacromolecules. 2009;10:2401–7.

    Article  Google Scholar 

  11. Isogai A, Ishizu A, Nakano J. Dissolution mechanism of cellulose in SO2–amine–dimethylsulfoxide. J Appl Polym Sci. 1987;33:1283–90.

    Article  CAS  Google Scholar 

  12. Rosenau T, Hofinger A, Potthast A, Kosma P. On the conformation of the cellulose solvent N-methylmorpholine-N-oxide (NMMO) in solution. Polymer. 2003;44:6153–8.

    Article  CAS  Google Scholar 

  13. Dogan H, Hilmioglu ND. Dissolution of cellulose with NMMO by microwave heating. Carbohydr Polym. 2009;75:90–4.

    Article  CAS  Google Scholar 

  14. Frey M, Cuculo JA, Hinestroza J, Kotek R. Creation of a new class of cellulose engineering materials. National Textile Center Annual Report, M05-CR02. 2006.

  15. Chen X, Chen J, You T, Wang K, Xu F. Effects of polymorphs on dissolution of cellulose in NaOH/urea aqueous solution. Carbohydr Polym. 2015;125:85–91.

    Article  CAS  Google Scholar 

  16. Qi H, Liebert T, Meister F, Heinze T. Homogenous carboxymethylation of cellulose in the NaOH/urea aqueous solution. React Funct Polym. 2009;69:779–84.

    Article  CAS  Google Scholar 

  17. El Seoud OA, Koschella A, Fidale LC, Dorn S, Heinze T. Applications of ionic liquids in carbohydrate chemistry: a window of opportunities. Biomacromolecules. 2007;8:2629–47.

    Article  Google Scholar 

  18. De Silva R, Vongsanga K, Wang X, Byrne N. Cellulose regeneration in ionic liquids: factors controlling the degree of polymerisation. Cellulose. 2015;22:2845–9.

    Article  Google Scholar 

  19. Boissou F, Mühlbauer A, De Oliveira VK, Leclercq L, Kunz W, Marinkovic S, et al. Transition of cellulose crystalline structure in biodegradable mixtures of renewably-sourced levulinate alkyl ammonium ionic liquids, γ-valerolactone and water. Green Chem. 2014;16:2463–71.

    Article  CAS  Google Scholar 

  20. Striegel AM, Timpa JD. Molecular characterization of polysaccharides dissolve in Me2NAc-LiCl by gel-permeation chromatography. Carbohydr Res. 1995;267:271–90.

    Article  CAS  Google Scholar 

  21. Sjöholm E, Gustafsson K, Eriksson B, Brown W, Colmsjö A. Aggregation of cellulose in lithium chloride/N,N-dimethylacetamide. Carbohydr Polym. 2000;41:153–61.

    Article  Google Scholar 

  22. Potthast A, Radosta S, Saake B, Lebioda S, Heinze T, Henniges U, et al. Comparison testing of methods for gel permeation chromatography of cellulose: coming closer to a standard protocol. Cellulose. 2015;22:1591–613.

    Article  CAS  Google Scholar 

  23. Ciolacu D, Ciolacu F, Popa VI. Amorphous cellulose-structure and characterization. Cell Chem Technol. 2011;45:13–21.

    CAS  Google Scholar 

  24. Iguchi M, Aida TM, Watanabe M, Smith RL. Dissolution and recovery of cellulose from 1-butyl-3-methylimidazolium chloride in presence of water. Carbohydr Polym. 2013;92:651–8.

    Article  CAS  Google Scholar 

  25. Ramos LA, Frollini E, Heinze T. Carboxymethylation of cellulose in the new solvent dimethyl sulfoxide/tetrabutylammonium fluoride. Carbohydr Polym. 2005;60:259–67.

    Article  CAS  Google Scholar 

  26. Swatloski RP, Spear SK, Holbrey JD, Rogers RD. Dissolution of cellose with ionic liquids. J Am Chem Soc. 2002;124:4974–5.

    Article  CAS  Google Scholar 

  27. Wendler F, Todi LN, Meister F. Thermostability of imidazolium ionic liquids as direct solvents for cellulose. Thermochim Acta. 2012;528:76–84.

    Article  CAS  Google Scholar 

  28. Araki J, Kataoka T, Katsuyama N, Teramoto A, Ito K, Abe K. A preliminary study for fiber spinning of mixed solutions of polyrotaxane and cellulose in a dimethylacetamide/lithium chloride (DMAc/LiCl) solvent system. Polymer. 2006;47:8241–6.

    Article  CAS  Google Scholar 

  29. Potthast A, Rosenau T, Sixta H, Kosma P. Degradation of cellulosic materials by heating in DMAc/LiCl. Tetrahedron Lett. 2002;3:7757–9.

    Article  Google Scholar 

  30. Sundberg J, Toriz G, Gatenholm P. Moisture induced plasticity of amorphous cellulose films from ionic liquid. Polymer. 2013;54:6555–60.

    Article  CAS  Google Scholar 

  31. Geng H, Yuan Z, Fan Q, Dai X, Zhao Y, Wang Z, et al. Characterisation of cellulose films regenerated from acetone/water coagulants. Carbohydr Polym. 2014;102:438–44.

    Article  CAS  Google Scholar 

  32. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK. Research cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels. 2010;3:10.

    Article  Google Scholar 

  33. Nam S, French AD, Condon BD, Concha M. Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr Polym. 2016;135:1–9.

    Article  CAS  Google Scholar 

  34. Mangiante G, Alcouffe P, Burdin B, Gaborieau M, Zeno E, Petit-Conil M, et al. Green nondegrading approach to alkyne-functionalized cellulose fibers and biohybrids thereof: synthesis and mapping of the derivatization. Biomacromolecules. 2013;14:254–63.

    Article  CAS  Google Scholar 

  35. ASTM D-1795. 2013. Standard test method for intrinsic viscosity of cellulose. AFNOR.

  36. Vaca-Medina G, Jallabert B, Viet D, Peydecastaing J, Rouilly A. Effect of temperature on high pressure cellulose compression. Cellulose. 2013;20:2311–9.

    Article  CAS  Google Scholar 

  37. Mazza M, Catana DA, Vaca-Garcia C, Cecutti C. Influence of water on the dissolution of cellulose in selected ionic liquids. Cellulose. 2009;16:207–15.

    Article  CAS  Google Scholar 

  38. Li H, Liu D, Wang F. Solubility of dilute SO2 in dimethyl sulfoxide. J Chem Eng Data. 2002;47:772–5.

    Article  CAS  Google Scholar 

  39. Potthast A, Rosenau T, Sartori J, Sixta H, Kosma P. Hydrolytic processes and condensation reactions in the cellulose solvent system N, N-dimethylacetamide/lithium chloride. Part 2: degradation of cellulose. Polymer. 2003;44:7–17.

    Article  CAS  Google Scholar 

  40. Ciolacu D, Pitol-Filho L, Ciolacu F. Studies concerning the accessibility of different allomorphic forms of cellulose. Cellulose. 2012;19:55–68.

    Article  CAS  Google Scholar 

  41. Schmitz S, Dona AC, Castignolles P, Gilbert RG, Gaborieau M. Assessment of the extent of starch dissolution in dimethyl sulfoxide by 1H NMR spectroscopy. Macromol Biosci. 2009;9:506–14.

    Article  CAS  Google Scholar 

  42. Kotelnikova NE, Bykhovtsova YV, Mikhailid AM, Saprykina NN. Comparative study on the methods for dissolving powder lignocelluloses in DMAc/LiCl and chemical properties of samples regenerated from the solutions. Russ J Bioorg Chem. 2015;41:700–7.

    Article  CAS  Google Scholar 

  43. Markovska I, Lyubchev L. J Therm Anal Calorim. 2007;89:809–14.

    Article  CAS  Google Scholar 

  44. Han J, Zhou C, French AD, Han G, Wu Q. Characterization of cellulose II nanoparticles regenerated from 1-butyl-3-methylimidazolium chloride. Carbohydr Polym. 2013;94:773–81.

    Article  CAS  Google Scholar 

  45. Kaloustian J, Pauli AM, Pastor J. Analyse thermique de la cellulose et de quelques derives etherifies et esterifies. J Therm Anal Calorim. 1997;48:791–804.

    Article  CAS  Google Scholar 

  46. Leroy V, Cancellieri D, Leoni E. Thermal degradation of ligno-cellulosic fuels: DSC and TGA studies. Thermochim Acta. 2006;451:131–8.

    Article  CAS  Google Scholar 

  47. Singh S, Varanas P, Singh P, Adams PD, Auer M, Simmons BA. Understanding the impact of ionic liquid pretreatment on cellulose and lignin via thermochemical analysis. Biomass Bioenergy. 2013;54:276–83.

    Article  CAS  Google Scholar 

  48. French AD. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose. 2014;21:885–96.

    Article  CAS  Google Scholar 

  49. Karimi K, Taherzadeh MJ. A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity. Bioresour Technol. 2016;200:1008–18.

    Article  Google Scholar 

  50. Mittal A, Katahira R, Himmel ME, Johnson DK. Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility. Biotechnol Biofuels. 2011;4:41.

    Article  CAS  Google Scholar 

  51. Ahn Y, Song Y, Kwak SY, Kim H. Highly ordered cellulose II crystalline regenerated from cellulose hydrolyzed by 1-butyl-3-methylimidazolium chloride. Carbohydr Polym. 2016;137:321–7.

    Article  CAS  Google Scholar 

  52. Karimi K, Taherzadeh MJ. A critical review on analysis in pretreatment of lignocelluloses: degree of polymerization, adsorption/desorption, and accessibility. Bioresour Technol. 2016;203:348–56.

    Article  CAS  Google Scholar 

  53. Dupont A, Harrison G. Conformation and d/d determination of cellulose in dimethylacetamide containing lithium chloride. Carbohydr Polym. 2004;58:233–43.

    Article  CAS  Google Scholar 

  54. Medronho B, Lindman B. Competing forces during cellulose dissolution: from solvents to mechanisms. Curr Opin Colloid Interface Sci. 2014;19(1):32–40.

    Article  CAS  Google Scholar 

  55. Heinze T, Dorn S, Schöbitz M, Liebert T, Köhler S, Meister F. Interactions of ionic liquids with polysaccharides—2: cellulose. Macromol Symp. 2008;262:8–22.

    Article  CAS  Google Scholar 

  56. Liebert T, Heinze T. Interaction of ionic liquids with polysaccharides. 5. Solvents and reaction media for the modification of cellulose. Bioresources. 2008;3(2):576–601.

    Google Scholar 

  57. Sen S, Martin JD, Argyropoulos DS. Review of cellulose non-derivatizing solvent interactions with emphasis on activity in inorganic molten salt hydrates. ACS Sustain Chem Eng. 2013;1:858–70.

    Article  CAS  Google Scholar 

  58. Dona A, Yuen CW, Peat J, Gilbert RG, Castignolles P, Gaborieau M. A new NMR method for directly monitoring and quantifying the dissolution kinetics of starch in DMSO. Carbohydr Res. 2007;342:2604–10.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Advanced Materials Characterisation Facility at Western Sydney University (Australia), Dr. Richard Wuhrer and Dr. Timothy Murphy for the training and assistance in performing XRD and SEM, Matthew Van Leeuwen for discussions about deconvolution of XRD diffractograms, Joel Thevarajah for discussions about polysaccharide dissolution, as well as the NMR facility at the University of New South Wales (Australia), Dr. James Hook and Dr. Aditya Rawal for access to a spectrometer, and Dr. Philippe Evon and Laurent Labonne for the TGA measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Rouilly.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebière, J., Heuls, M., Castignolles, P. et al. Structural modifications of cellulose samples after dissolution into various solvent systems. Anal Bioanal Chem 408, 8403–8414 (2016). https://doi.org/10.1007/s00216-016-9958-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9958-1

Keywords

Navigation