Skip to main content
Log in

Effects of multi-walled carbon nanotubes on the electrogenerated chemiluminescence and fluorescence of CdTe quantum dots

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Effects of multi-walled carbon nanotubes (CNTs) that were immobilized on glassy carbon electrode (GCE) on the electrogenerated chemiluminescence (ECL) of CdTe quantum dots (QDs) using tri-n-propylamine (TPrA) and 2-(dibutylamino)ethanol (DBAE) as the anodic coreactant are reported. Depending on the solution concentration of coreactant and QDs, the surface-confined CNTs could either quench or enhance the ECL intensity. Lowering the solution concentration of QDs was found to be beneficial for enhancing ECL. A V-shaped profile of ECL intensity ratio (at CNTs over bare GCE) versus coreactant concentration suggested that either low or high concentrations of coreactant were needed for effective ECL generation. The ECL quenching by CNTs was believed to follow the typical dynamic quenching mechanism, which was confirmed by fluorescent data that provided a Stern-Volmer and an estimated quenching constant of 11.7 g/L and 1.2 × 109 L/g•s, respectively, for the excited state CdTe* quenching by CNTs in solution. Furthermore, the ECL performance at CNTs was also affected by the type of the coreactant used, where up to 30 times enhancement in ECL was observed from the CdTe/DBAE system under the given experimental conditions.

Illustration of anodic quantum dots ECL enhancement and quenching by multi-walled carbon nanotubes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bard AJ. Electrogenerated chemiluminescence. Monographs in electroanalytical chemistry and electrochemistry. New York: Marcel Dekker; 2004.

    Google Scholar 

  2. Deng S, Ju H. Electrogenerated chemiluminescence of nanomaterials for bioanalysis. Analyst. 2013;138(1):43.

    Article  CAS  Google Scholar 

  3. Miao W. Electrogenerated chemiluminescence and its biorelated applications. Chem Rev. 2008;108(7):2506–53.

    Article  CAS  Google Scholar 

  4. Juris A, Balzani V, Barigelletti F, Campagna S, Belser P, von Zelewsky A. Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence. Coord Chem Rev. 1988;84:85–277.

    Article  CAS  Google Scholar 

  5. Gatto-Menking DL, Yu H, Bruno JG, Goode MT, Miller M, Zulich AW. Sensitive detection of biotoxoids and bacterial spores using an immunomagnetic clectrochemiluminescence sensor. Biosens Bioelectron. 1995;10(6/7):501–7.

    Article  CAS  Google Scholar 

  6. Ding Z, Quinn B, Haram S, Pell L, Korgel B, Bard AJ. Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science. 2002;296:1293.

    Article  CAS  Google Scholar 

  7. Myung N, Bae Y, Bard AJ. Effect of surface passivation on the electrogenerated chemiluminescence of CdSe/ZnSe nanocrystals. Nano Lett. 2003;3(8):1053–5.

    Article  CAS  Google Scholar 

  8. Myung N, Ding Z, Bard AJ. Electrogenerated chemiluminescence of CdSe nanocrystals. Nano Lett. 2002;2(11):1315–9.

    Article  CAS  Google Scholar 

  9. Myung N, Lu X, Johnston KP, Bard AJ. Electrogenerated chemiluminescence of Ge nanocrystals. Nano Lett. 2004;4(1):183–5.

    Article  CAS  Google Scholar 

  10. Bae Y, Myung N, Bard AJ. Electrochemistry and electrogenerated chemiluminescence of CdTe nanoparticles. Nano Lett. 2004;4(6):1153–61.

    Article  CAS  Google Scholar 

  11. Wang S, Harris E, Shi J, Chen A, Parajuli S, Jing X, et al. Electrogenerated chemiluminescence determination of C-reactive protein with carboxyl CdSe/ZnS core/shell quantum dots. Phys Chem Chem Phys. 2010;12(34):10073–80.

    Article  CAS  Google Scholar 

  12. Zhou H, Liu J, Zhang S. Quantum dot-based photoelectric conversion for biosensing applications. TrAC Trends Anal Chem. 2015;67:56–73.

    Article  CAS  Google Scholar 

  13. Muzyka K. Current trends in the development of the electrochemiluminescent immunosensors. Biosens Bioelectron. 2014;54:393–407.

    Article  CAS  Google Scholar 

  14. Osman K, Shou-Nian D, Qi-Le L. Solid-state electrogenerated chemiluminescence based on semiconductor nanocrystals and tris(2,2′-bipyridyl)ruthenium(II) complex. Curr Anal Chem. 2014;10(4):622–34.

    Article  Google Scholar 

  15. Lisdat F, Schäfer D, Kapp A. Quantum dots on electrodes—new tools for bioelectroanalysis. Anal Bioanal Chem. 2013;405(11):3739–52.

    Article  CAS  Google Scholar 

  16. Sun X, Du Y, Dong S, Wang E. Method for effective immobilization of Ru(bpy)3 2+ on an electrode surface for solid-state electrochemiluminescence detection. Anal Chem. 2005;77(24):8166–9.

    Article  CAS  Google Scholar 

  17. Zhang L, Xu Z, Sun X, Dong S. A novel alcohol dehydrogenase biosensor based on solid-state electrogenerated chemiluminescence by assembling dehydrogenase to Ru(bpy)3 2+-Au nanoparticles aggregates. Biosens Bioelectron. 2007;22(6):1097–100.

    Article  CAS  Google Scholar 

  18. Choi HN, Lee J-Y, Lyu Y-K, Lee W-Y. tris(2,2′-bipyridyl)ruthenium(II) electrogenerated chemiluminescence sensor based on carbon nanotube dispersed in Sol-gel-derived titania–nafion composite films. Anal Chim Acta. 2006;565(1):48–55.

    Article  CAS  Google Scholar 

  19. Du Y, Qi B, Yang X, Wang E. Synthesis of PtNPs/AQ/Ru(bpy)3 2+ colloid and its application as a sensitive solid-state electrochemiluminescence sensor material. J Phys Chem B. 2006;110(43):21662–6.

    Article  CAS  Google Scholar 

  20. Li J, Xu Y, Wei H, Huo T, Wang E. Electrochemiluminescence sensor based on partial sulfonation of polystyrene with carbon nanotubes. Anal Chem. 2007;79:5439–43.

    Article  CAS  Google Scholar 

  21. Zhang L, Guo Z, Xu Z, Dong S. Highly sensitive electrogenerated chemiluminescence produced at Ru(bpy)3 2+ in Eastman-AQ55D–carbon nanotube composite film electrode. J Electroanal Chem. 2006;592(1):63–7.

    Article  CAS  Google Scholar 

  22. Chang Z, Zhou J, Zhao K, Zhu N, He P, Fang Y. Ru(bpy)3 2+-doped silica nanoparticle DNA probe for the electrogenerated chemiluminescence detection of DNA Hybridization. Electrochim Acta. 2006;52(2):575–80.

    Article  CAS  Google Scholar 

  23. Kim D-J, Lyu Y-K, Choi HN, Min I-H, Lee W-Y. Nafion-stabilized magnetic nanoparticles (Fe3O4) for [Ru(bpy)3]2+ (bpy = bipyridine) electregenerated chemiluminescence sensor. Chem Commun. 2005;23:2966–8.

    Article  Google Scholar 

  24. Wang K, Liu Q, Wu X-Y, Guan Q-M, Li H-N. Graphene enhanced electrochemiluminescence of CdS nanocrystal for H2O2 sensing. Talanta. 2010;82(1):372–6.

    Article  CAS  Google Scholar 

  25. Dai H, Xu G, Zhang S, Gong L, Li X, Yang C, et al. Carbon nanotubes functionalized electrospun nanofibers formed 3D electrode enables highly strong ECL of peroxydisulfate and its application in immunoassay. Biosens Bioelectron. 2014;61:575–8.

    Article  CAS  Google Scholar 

  26. Luo X-L, Xu J-J, Wang J-L, Chen H-Y. Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for biosensor application. Chem Commun. 2005;16:2169–71.

    Article  Google Scholar 

  27. Zhao Q, Gan Z, Zhuang Q. Electrochemical sensors based on carbon nanotubes. Electroanalysis. 2002;14(23):1609–13.

    Article  CAS  Google Scholar 

  28. Guo L, Liu X, Hu Z, Deng S, Ju H. Electrochemiluminescence of CdSe quantum dots composited with nitrogen-doped carbon nanotubes. Electroanalysis. 2009;21(22):2495–8.

    CAS  Google Scholar 

  29. Lin D, Wu J, Yan F, Deng S, Ju H. Ultrasensitive immunoassay of protein biomarker based on electrochemiluminescent quenching of quantum dots by hemin bio-bar-coded nanoparticle tags. Anal Chem. 2011;83(13):5214–21.

    Article  CAS  Google Scholar 

  30. Tang X, Zhao D, He J, Li F, Peng J, Zhang M. Quenching of the electrochemiluminescence of tris(2,2′-bipyridine)ruthenium(II)/Tri-n-propylamine by pristine carbon nanotube and its application to quantitative detection of DNA. Anal Chem. 2013;85(3):1711–8.

    Article  CAS  Google Scholar 

  31. Rosado Jr DJ, Miao W, Sun Q, Deng Y. Electrochemistry and electrogenerated chemiluminescence of all-trans conjugated polymer poly[distyrylbenzene-b-(ethylene oxide)]s. J Phys Chem B. 2006;110(32):15719–23.

    Article  CAS  Google Scholar 

  32. Liang G-D, Shen L-P, Zhang X-L, Zou G-Z. One-pot synthesis of dual-stabilizer-capped CdTe nanocrystals with efficient near-infrared photoluminescence and electrochemiluminescence. Eur J Inorg Chem 2011(25):3726–30

  33. Yu WW, Qu L, Guo W, Peng X. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater. 2003;15(14):2854–60.

    Article  CAS  Google Scholar 

  34. Peng ZA, Peng X. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. J Am Chem Soc. 2002;124(13):3343–53.

    Article  CAS  Google Scholar 

  35. Miao W. Electrogenerated chemiluminescence. In: Zoski CG, editor. Handbook of electrochemistry, chap 13. Amsterdam: Elsevier; 2007. p. 541–90.

    Chapter  Google Scholar 

  36. Sherigara BS, Kutner W, D’Souza F. Electrocatalytic properties and sensor applications of fullerenes and carbon nanotubes. Electroanalysis. 2003;15(9):753–72.

    Article  CAS  Google Scholar 

  37. Punbusayakul N. Carbon nanotubes architectures in electroanalysis. Procedia Eng. 2012;32:683–9.

    Article  CAS  Google Scholar 

  38. Miao W, Choi J-P, Bard AJ. Electrogenerated chemiluminescence 69: the tris(2,2′-bipyridine)ruthenium(II), (Ru(bpy)3 2+)/Tri-n-propylamine (TPrA) system revisited—a new route involving TPrA.+ cation radicals. J Am Chem Soc. 2002;124(48):14478–85.

    Article  CAS  Google Scholar 

  39. Miao W, Choi J-P. Coreactants. In: Bard AJ, editor. Electrogenerated chemiluminescence. New York: Marcel Dekker; 2004. p. 213–71.

    Google Scholar 

  40. Legenza MW, Marzzacco CJ. Rate constant for fluorescence quenching. An undergraduate experiment using the spectronic 20. J Chem Educ. 1977;54(3):183.

    Article  CAS  Google Scholar 

  41. Cheng PPH, Silvester D, Wang G, Kalyuzhny G, Douglas A, Murray RW. Dynamic and static quenching of fluorescence by 1–4 nm diameter gold monolayer-protected clusters. J Phys Chem B. 2006;110(10):4637–44.

    Article  CAS  Google Scholar 

  42. Parajuli S, Jing X, Miao W. Electrogenerated chemiluminescence (ECL) quenching of the Ru(bpy)3 2+/TPrA system by the explosive TNT. Electrochim Acta. 2015;180:196–201.

    Article  CAS  Google Scholar 

  43. Yoshiyuki N, Takuya N, Makiko S, Tsuyoshi K. Photopolymerization sensitized by CdTe nanocrystals in ionic liquid: highly efficient photoinduced electron transfer. Jpn J Appl Phys. 2008;47(2S):1385.

    Google Scholar 

  44. Ray K, Badugu R, Lakowicz JR. Metal-enhanced fluorescence from CdTe nanocrystals: a single-molecule fluorescence study. J Am Chem Soc. 2006;128(28):8998–9.

    Article  CAS  Google Scholar 

  45. Alphandéry E, Walsh LM, Rakovich Y, Bradley AL, Donegan JF, Gaponik N. Highly efficient Förster resonance energy transfer between CdTe nanocrystals and rhodamine B in mixed solid films. Chem Phys Lett. 2004;388(1/3):100–4.

    Article  Google Scholar 

  46. Zhang J, Badugu R, Lakowicz JR. Fluorescence quenching of CdTe nanocrystals by bound gold nanoparticles in aqueous solution. Plasmonics. 2007;3(1):3–11.

    Article  CAS  Google Scholar 

  47. Wuister SF, van Driel F, Meijerink A. Luminescence of CdTe nanocrystals. J Lumin. 2003;102(103):327–32.

    Article  Google Scholar 

  48. Omogo B, Aldana JF, Heyes CD. Radiative and non-radiative lifetime engineering of quantum dots in multiple solvents by surface atom stoichiometry and ligands. J Phys Chem C Nanomater Interfaces. 2013;117(5):2317–27.

    Article  CAS  Google Scholar 

  49. Lakowicz JR. Principles of fluorescence spectroscopy. New York: Springer; 2006.

    Book  Google Scholar 

  50. White HS, Bard AJ. Electrogenerated chemiluminescence. 41. Electrogenerated chemiluminescence and chemiluminescence of the tris(2,2′-bipyridine)ruthenium(2+)-peroxydisulfate(2-) system in acetonitrile-water solutions. J Am Chem Soc. 1982;104(25):6891–5.

    Article  CAS  Google Scholar 

  51. Liu X, Shi L, Niu W, Li H, Xu G. Environmentally friendly and highly sensitive ruthenium(II) tris(2,2′-bipyridyl) electrochemiluminescent system using 2-(dibutylamino)ethanol as co-reactant. Angew Chem Int Ed. 2007;46(3):421–4.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Science Foundation via an NSF CAREER award (CHE 0955878) and the National Natural Science Foundation of China (no. 21475006, LPL) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wujian Miao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Analytical Electrochemiluminescence with guest editors Hua Cui, Francesco Paolucci, Neso Sojic, and Guobao Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wusimanjiang, Y., Meyer, A., Lu, L. et al. Effects of multi-walled carbon nanotubes on the electrogenerated chemiluminescence and fluorescence of CdTe quantum dots. Anal Bioanal Chem 408, 7049–7057 (2016). https://doi.org/10.1007/s00216-016-9573-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9573-1

Keywords

Navigation