Skip to main content
Log in

Renovating the chromoionophores and detection modes in carrier-based ion-selective optical sensors

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Ion-selective optical sensing is an important branch of analytical and bioanalytical chemistry. Conventional ion-selective optodes are based on H+ chromoionophores. These sensors are known to be pH dependent and usually operated in a passive mode. In view of the applications in complex real samples, the sensors must exhibit not only excellent chemical selectivity but also the ability to eliminate the optical background interference such as autofluorescence and light scattering. In this article, recent advances to renovate the chromoionophores and detection modes to overcome the pH cross-response and to eliminate the background optical interference are summarized. Topics include sensors based on solvatochromic dyes, alternative chromoionophores, photoswitchable sensors, upconverting nanoparticles, luminescence decay time, and others.

Ion-selective optical sensing is an important branch of analytical and bioanalytical chemistry. In view of the applications in complex real samples, this article highlighted recent advances to renovate the chromoionophores and detection modes to overcome the drawbacks from the pH cross-response and background optical interference

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bakker E, Bühlmann P, Pretsch E. Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics. Chem Rev. 1997;97(8):3083–132.

    Article  CAS  Google Scholar 

  2. Brasuel M, Kopelman R, Miller TJ, Tjalkens R, Philbert MA. Fluorescent nanosensors for intracellular chemical analysis: decyl methacrylate liquid polymer matrix and ion-exchange-based potassium PEBBLE sensors with real-time application to viable rat C6 glioma cells. Anal Chem. 2001;73:2221–8.

    Article  CAS  Google Scholar 

  3. Clark HA, Hoyer M, Philbert MA, Kopelman R. Optical nanosensors for chemical analysis inside single living cells. 1. Fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors. Anal Chem. 1999;71:4831–6.

    Article  CAS  Google Scholar 

  4. Park EJ, Brasuel M, Behrend C, Philbert MA, Kopelman R. Ratiometric optical PEBBLE nanosensors for real-time magnesium ion concentrations inside viable cells. Anal Chem. 2003;75:3784–91.

    Article  CAS  Google Scholar 

  5. Balaconis MK, Clark HA. Biodegradable optode-based nanosensors for in vivo monitoring. Anal Chem. 2012;84:5787–93.

    Article  CAS  Google Scholar 

  6. Dubach JM, Das S, Rosenzweig A, Clark HA. Visualizing sodium dynamics in isolated cardiomyocytes using fluorescent nanosensors. Proc Natl Acad Sci. 2009;106(38):16145–50.

    Article  CAS  Google Scholar 

  7. Bühlmann P, Pretsch E, Bakker E. Carrier-based ion-selective electrodes and bulk optodes. 2. Ionophores for potentiometric and optical sensors. Chem Rev. 1998;98(4):1593–688.

    Article  Google Scholar 

  8. Kurihara K, Ohtsu M, Yoshida T, Abe T, Hisamoto H, Suzuki K. Micrometer-sized sodium ion-selective optodes based on a "Tailed" neutral ionophore. Anal Chem. 1999;71(16):3558–66.

    Article  CAS  Google Scholar 

  9. Lerchi M, Reitter E, Simon W, Pretsch E, Chowdhury DA, Kamata S. Bulk optodes based on neutral dithiocarbamate ionophores with high selectivity and sensitivity for silver and mercury cations. Anal Chem. 1994;66(10):1713–7.

    Article  CAS  Google Scholar 

  10. Ngeontae W, Xu C, Ye N, Wygladacz K, Aeungmaitrepirom W, Tuntulani T, et al. Polymerized nile blue derivatives for plasticizer-free fluorescent ion optode microsphere sensors. Anal Chim Acta. 2007;599:124–33.

    Article  CAS  Google Scholar 

  11. Dubach JM, Harjes DI, Clark HA. Ion-selective nano-optodes incorporating quantum dots. J Am Chem Soc. 2007;129(27):8418–9.

    Article  CAS  Google Scholar 

  12. Xie X, Li X, Ge Y, Qin Y, Chen H-Y. Rhodamine-based ratiometric fluorescent ion-selective bulk optodes. Sensors Actuators B. 2010;151(1):71–6.

    Article  Google Scholar 

  13. Seiler K, Simon W. Principles and mechanisms of ion-selective optodes. Sensors Actuators B. 1992;6:295–8.

    Article  CAS  Google Scholar 

  14. Hisamoto H, Suzuki K. Ion-selective optodes: current developments and future prospects. TrAC Trends Anal Chem. 1999;18(8):513–24.

    Article  CAS  Google Scholar 

  15. Xie X, Bakker E. Ion selective optodes: from the bulk to the nanoscale. Anal Bioanal Chem. 2015;407(14):3899–910.

    Article  CAS  Google Scholar 

  16. Reichardt C. Solvatochromic dyes as solvent polarity indicators. Chem Rev. 1994;94(8):2319–58.

    Article  CAS  Google Scholar 

  17. Buncel E, Rajagopal S. Solvatochromism and solvent polarity scales. Acc Chem Res. 1990;23(7):226–31.

    Article  CAS  Google Scholar 

  18. Saito R, Matsumura Y, Suzuki S, Okazaki N. Intensely blue-fluorescent 2,5-bis(benzoimidazol-2-yl)pyrazine dyes with improved solubility: their synthesis, fluorescent properties, and application as microenvironment polarity probes. Tetrahedron. 2010;66:8273–9.

    Article  CAS  Google Scholar 

  19. Reichardt C, Welton T. Solvents and solvent effects in organic chemistry, 4th updated and. Enlargedth ed. Weinheim: Wiley-VCH; 2010.

    Book  Google Scholar 

  20. Waggoner AS. Dye indicators of membrane potential. Annu Rev Biophys Bioeng. 1979;8:47–68.

    Article  CAS  Google Scholar 

  21. Fromherz P, Hubener G, Kuhn B, Hinner MJ. ANNINE-6plus, a voltage-sensitive dye with good solubility, strong membrane binding and high sensitivity. Eur Biophys J. 2008;37:509–14.

    Article  CAS  Google Scholar 

  22. Krause C, Werner T, Huber C, Wolfbeis OS. Emulsion-based fluorosensors for potassium featuring improved stability and signal change. Anal Chem. 1999;71(23):5304–8.

    Article  CAS  Google Scholar 

  23. Huber C, Klimant I, Krause C, Werner T, Wolfbeis OS. Nitrate-selective optical sensor applying a lipophilic fluorescent potential-sensitive dye. Anal Chim Acta. 2001;449:81–93.

    Article  CAS  Google Scholar 

  24. Murkovic I, Lobnik A, Mohr GJ, Wolfbeis OS. Fluorescent potential-sensitive dyes for use in solid state sensors for potassium ion. Anal Chim Acta. 1996;334:125–32.

    Article  CAS  Google Scholar 

  25. Huber C, Werner T, Krause C, Wolfbeis OS. Novel chloride-selective optode based on polymer-stabilized emulsions doped with a lipophilic fluorescent polarity-sensitive dye. Analyst. 1999;124:1617–22.

    Article  CAS  Google Scholar 

  26. Wolfbeis OS. Fluorescence-based ion sensing using potential-sensitive dyes. Sensors Actuators B. 1995;29:140–7.

    Article  CAS  Google Scholar 

  27. Strömberg N, Hulth S. Ammonium selective fluorosensor based on the principles of coextraction. Anal Chim Acta. 2001;443: 215-225

  28. Xie X, Zhai J, Bakker E. Potentiometric response from ion-selective nanospheres with voltage-sensitive dyes. J Am Chem Soc. 2014;136(47):16465–8.

    Article  CAS  Google Scholar 

  29. Xie X, Gutiérreza A, Trofimov V, Szilagyi I, Soldati T, Bakker E. Charged solvatochromic dyes as signal transducers in ph independent fluorescent and colorimetric ion selective nanosensors. Anal Chem. 2015;87(19):9954–9.

    Article  CAS  Google Scholar 

  30. Xie X, Bakker E. Determination of effective stability constants of ion–carrier complexes in ion selective nanospheres with charged solvatochromic dyes. Anal Chem. 2015;87(22):11587–91.

    Article  CAS  Google Scholar 

  31. Xie X, Mistlberger G, Bakker E. Ultrasmall fluorescent ion-exchanging nanospheres containing selective ionophores. Anal Chem. 2013;85(20):9932–8.

    Article  CAS  Google Scholar 

  32. Xia W-S, Schmehl RH, Li C-J. A highly selective fluorescent chemosensor for K+ from a bis-15-Crown-5 derivative. J Am Chem Soc. 1999;121:5599–600.

    Article  CAS  Google Scholar 

  33. Baruah M, Qin W, Vallee RAL, Beljonne D, Rohand T, Dehaen W, et al. A highly potassium-selective ratiometric fluorescent indicator based on BODIPY azacrown ether excitable with visible light. Org Lett. 2005;7(20):4377–80.

    Article  CAS  Google Scholar 

  34. Citterio D, Takeda J, Kosugi M, Hisamoto H, Sasaki S-i, Komatsu H, et al. pH-independent fluorescent chemosensor for highly selective lithium ion sensing. Anal Chem. 2007;79:1237–42.

    Article  CAS  Google Scholar 

  35. Jarolímová Z, Vishe M, Lacour J, Bakker E. Potassium ion-selective fluorescent and pH independent nanosensors based on functionalized polyether macrocycles. Chem Sci. 2016;7:525–33.

    Article  Google Scholar 

  36. Xie X, Zhai J, Bakker E. pH independent nano-optode sensors based on exhaustive ion-selective nanospheres. Anal Chem. 2014;86(6):2853–6.

    Article  CAS  Google Scholar 

  37. Xie X, Zhai J, Crespo GA, Bakker E. Ionophore-based ion-selective optical nanosensors operating in exhaustive sensing mode. Anal Chem. 2014;86(17):8770–5.

    Article  CAS  Google Scholar 

  38. Fenzl C, Kirchinger M, Hirsch T, Wolfbeis OS. Photonic crystal-based sensing and imaging of potassium ions. Chemosensors. 2014;2(3):207–18.

    Article  Google Scholar 

  39. Asher SA, Sharma AC, Goponenko AV, Ward MM. Photonic crystal aqueous metal cation sensing materials. Anal Chem. 2003;75(7):1676–83.

    Article  CAS  Google Scholar 

  40. Reese CE, Asher SA. Photonic crystal optrode sensor for detection of Pb2+ in high ionic strength environments. Anal Chem. 2003;75(15):3915–8.

    Article  CAS  Google Scholar 

  41. Arunbabu D, Sannigrahi A, Jana T. Photonic crystal hydrogel material for the sensing of toxic mercury ions (Hg2+) in water. Soft Matter. 2011;7:2592–9.

    Article  CAS  Google Scholar 

  42. Saito H, Takeoka Y, Watanabe M (2003) Simple and precision design of porous gel as a visible indicator for ionic species and concentration. Chem Commun 2126–2127

  43. Marriott G, Mao S, Sakata T, Ran J, Jackson DK, Petchprayoon C, et al. Optical lock-in detection imaging microscopy for contrast-enhanced imaging in living cells. Proc Natl Acad Sci. 2008;105(46):17789–94.

    Article  CAS  Google Scholar 

  44. Yan Y, Marriott ME, Petchprayoon C, Marriott G. Optical switch probes and Optical Lock-in Detection (OLID) imaging microscopy: high-contrast fluorescence imaging within living systems. Biochem J. 2011;433(3):411–22.

    Article  CAS  Google Scholar 

  45. Richards CI, Hsiang J-C, Senapati D, Patel S, Yu J, Vosch T, et al. Optically modulated fluorophores for selective fluorescence signal recovery. J Am Chem Soc. 2009;131(13):4619–21.

    Article  CAS  Google Scholar 

  46. Hsiang J-C, Jablonski AE, Dickson RM. Optically modulated fluorescence bioimaging: visualizing obscured fluorophores in high background. Acc Chem Res. 2014;47(5):1545–54.

    Article  CAS  Google Scholar 

  47. Querard J, Markus T-Z, Plamont M-A, Gauron C, Wang P, Espagne A, et al. Photoswitching kinetics and phase-sensitive detection add discriminative dimensions for selective fluorescence imaging. Angew Chem Int Ed. 2015;54:2633–7.

    Article  CAS  Google Scholar 

  48. Querard J, Gautier A, Saux TL, Jullien L. Expanding discriminative dimensions for analysis and imaging. Chem Sci. 2015;6:2968–78.

    Article  CAS  Google Scholar 

  49. Byrne RJ, Stitzel SE, Diamond D. Photo-regenerable surface with potential for optical sensing. J Mater Chem. 2006;16:1332–1337

  50. Suzuki T, Kato T, Shinozaki H (2004) Photo-reversible Pb2+-complexation of thermosensitive poly(N-isopropyl acrylamide-co-spiropyran acrylate) in water. Chem Commun 2036–2037

  51. Fries KH, Driskell JD, Samanta S, Locklin J. Spectroscopic analysis of metal ion binding in spriopyran containing copolymer thin films. Anal Chem. 2010;82:3306–14.

    Article  CAS  Google Scholar 

  52. Fries KH, Driskell JD, Sheppard GR, Locklin J. Fabrication of spiropyran-containing thin film sensors used for the simultaneous identification of multiple metal ions. Langmuir. 2011;27:12253–60.

    Article  CAS  Google Scholar 

  53. Berkovic G, Krongauz V, Weiss V. Spiropyrans and spirooxazines for memories and switches. Chem Rev. 2000;100(5):1741–5.

    Article  CAS  Google Scholar 

  54. Buback J, Kullmann M, Langhojer F, Nuernberger P, Schmidt R, Würthner F, et al. Ultrafast bidirectional photoswitching of a spiropyran. J Am Chem Soc. 2010;132(46):16510–9.

    Article  CAS  Google Scholar 

  55. Radu A, Byrne R, Alhashimy N, Fusaro M, Scarmagnani S, Diamond D. Spiropyran-based reversible, light-modulated sensing with reduced photofatigue. J Photochem Photobiol A. 2009;206:109–15.

    Article  CAS  Google Scholar 

  56. Xie X, Crespo GA, Mistlberger G, Bakker E. Photocurrent generation based on a light-driven proton pump in an artificial liquid membrane. Nat Chem. 2014;6:202–7.

    Article  CAS  Google Scholar 

  57. Ziółkowski B, Florea L, Theobald J, Benito-Lopez F, Diamond D. Self-protonating spiropyran-co-NIPAM-co-acrylic acid hydrogel photoactuators. Soft Matter. 2013;9(36):8754–60.

    Article  Google Scholar 

  58. Xie X, Mistlberger G, Bakker E. Reversible photodynamic chloride-selective sensor based on photochromic spiropyran. J Am Chem Soc. 2012;134(41):16929–32.

    Article  CAS  Google Scholar 

  59. Mistlberger G, Crespo GA, Xie X, Bakker E. Photodynamic ion sensor systems with spiropyran: photoactivated acidity changes in plasticized poly(vinyl chloride). Chem Commun. 2012;48:5662–4.

    Article  CAS  Google Scholar 

  60. Xie X, Bakker E. Light-controlled reversible release and uptake of potassium ions from ion-exchanging nanospheres. ACS Appl Mater Interfaces. 2014;6(4):2666–70.

    Article  CAS  Google Scholar 

  61. Mistlberger G, Xie X, Pawlak M, Crespo GA, Bakker E. Photoresponsive ion extraction/release systems: dynamic ion optodes for calcium and sodium based on photochromic spiropyran. Anal Chem. 2013;85(5):2983–90.

    Article  CAS  Google Scholar 

  62. Johns VK, Patel PK, Hassett S, Calvo-Marzal P, Qin Y, Chumbimuni-Torres KY. Visible light activated ion sensing using a photoacid polymer for calcium detection. Anal Chem. 2014;86(13):6184–7.

    Article  CAS  Google Scholar 

  63. Mistlberger G, Pawlak M, Bakker E, Klimant I. Photodynamic optical sensor for buffer capacity and ph based on hydrogel-incorporated spiropyran. Chem Commun. 2015;51:4172–5.

    Article  CAS  Google Scholar 

  64. Patel PK, Johns VK, Mills DM, Boone JE, Calvo-Marzal P, Chumbimuni-Torres KY. Tuning the equilibrium response time of meta-stable photoacids in ion-sensors by appropriate functionalization. Electroanalysis. 2015;27:677–83.

    Article  CAS  Google Scholar 

  65. Kalisky Y, Orlowski TE, Williams DJ. Dynamics of the spiropyran-merocyanine conversion in solution. J Phys Chem. 1983;87(26):5333–8.

    Article  CAS  Google Scholar 

  66. Levitus M, Talhavini M, Negri RM, Atvars TDZ, Aramendía PF. Novel kinetic model in amorphous polymers. Spiropyran-merocyanine system revisited. J Phys Chem B. 1997;101(39):7680–6.

    Article  CAS  Google Scholar 

  67. Patel PK, Chumbimuni-Torres KY. Visible light-induced ion-selective optodes based on a metastable photoacid for cation detection. Analyst. 2016;141:85–9.

    Article  CAS  Google Scholar 

  68. Johns VK, Peng P, DeJesus J, Wang Z, Liao Y. Visible-light-responsive reversible photoacid based on a metastable carbanion. Chem Eur J. 2014;20:689–92.

    Article  CAS  Google Scholar 

  69. Fischer LH, Harms GS, Wolfbeis OS. Upconverting nanoparticles for nanoscale thermometry. Angew Chem Int Ed. 2011;50:4546–51.

    Article  CAS  Google Scholar 

  70. Chen G, Qiu H, Prasad PN, Chen X. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem Rev. 2014;114(10):5161–214.

    Article  CAS  Google Scholar 

  71. Ng KK, Zheng G. Molecular interactions in organic nanoparticles for phototheranostic applications. Chem Rev. 2015;115(19):11012–42.

    Article  CAS  Google Scholar 

  72. Zhou J, Liu Q, Feng W, Sun Y, Li F. Upconversion luminescent materials: advances and applications. Chem Rev. 2015;115(1):395–465.

    Article  CAS  Google Scholar 

  73. Sedlmeier A, Gorris HH. Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications. Chem Soc Rev. 2015;44:1526–60.

    Article  CAS  Google Scholar 

  74. Xie L, Qin Y, Chen H-Y. Polymeric optodes based on upconverting nanorods for fluorescent measurements of pH and metal ions in blood samples. Anal Chem. 2012;84:1969–74.

    Article  CAS  Google Scholar 

  75. Xie L, Qin Y, Chen H-Y. Direct fluorescent measurement of blood potassium with polymeric optical sensors based on upconverting nanomaterials. Anal Chem. 2013;85:2617–22.

    Article  CAS  Google Scholar 

  76. Wu J, Qin Y. Polymeric optodes based on upconverting nanorods for fluorescence measurements of Pb2+ in complex samples. Sensors Actuators B. 2014;192:51–5.

    Article  CAS  Google Scholar 

  77. Krause C, Werner T, Huber C, Klimant I, Wolfbeis OS. Luminescence decay time-based determination of potassium ions. Anal Chem. 1998;70:3983–5.

    Article  CAS  Google Scholar 

  78. Sarabipour S, Piccolo ND, Hristova K. Characterization of membrane protein interactions in plasma membrane derived vesicles with quantitative imaging Förster resonance energy transfer. Acc Chem Res. 2015;48:2262–9.

    Article  CAS  Google Scholar 

  79. Jokic T, Borisov SM, Saf R, Nielsen DA, Kühl M, Klimant I. Highly photostable near-infrared fluorescent pH indicators and sensors based on BF2-chelated tetraarylazadipyrromethene dyes. Anal Chem. 2012;84(15):6723–30.

    Article  CAS  Google Scholar 

  80. Xie X, Crespo GA, Bakker E. Oxazinoindolines as fluorescent H+ turn-on chromoionophores for optical and electrochemical ion sensors. Anal Chem. 2013;85(15):7434–40.

    Article  CAS  Google Scholar 

  81. Sun Y, Rombola C, Jyothikumar V, Periasamy A. Forster resonance energy transfer microscopy and spectroscopy for localizing protein–protein interactions in living cells. Cytometry A. 2013;83A:780–93.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks the Swiss National Science Foundation (SNSF) and the University of Geneva for financial support. The author thanks Professor Eric Bakker for providing the academic environment, and the reviewers for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojiang Xie.

Ethics declarations

The author declares no potential conflicts of interest.

Additional information

Published in the topical collection featuring Young Investigators in Analytical and Bioanalytical Science with guest editors S. Daunert, A. Baeumner, S. Deo, J. Ruiz Encinar, and L. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, X. Renovating the chromoionophores and detection modes in carrier-based ion-selective optical sensors. Anal Bioanal Chem 408, 2717–2725 (2016). https://doi.org/10.1007/s00216-016-9406-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9406-2

Keywords

Navigation