Skip to main content

Advertisement

Log in

Label-free and sensitive aptasensor based on dendritic gold nanostructures on functionalized SBA-15 for determination of chloramphenicol

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A highly sensitive and low-cost electrochemical aptasensor was developed for the determination of chloramphenicol (CAP). The system was based on a CAP-binding aptamer, a molecular recognition element, and 1,4-diazabicyclo[2.2.2]octane (DABCO)-supported mesoporous silica SBA-15 on the surface of a screen-printed graphite electrode for formation of dendritic gold nanostructures and improving the performance and conductivity of the biosensor. Hemin has been applied as an electrochemical indicator which interacted with the guanine bases of the aptamer. In the absence of CAP, hemin binds to the aptamer and produces a weak differential pulse voltammetric (DPV) signal. The presence of CAP led to stabilization of the folded aptamer, which generated an amplified DPV signal. The peak current of hemin increased linearly with the concentration of CAP. Under optimal conditions, two linear ranges were obtained from 0.03 to 0.15 μM and 0.15 to 7.0 μM, respectively, and the detection limit was 4.0 nM. The prepared biosensor has good selectivity against other non-target drugs. Thus, the sensor could provide a promising platform for the fabrication of aptasensors. The feasibility of using this aptasensor was demonstrated by determination of CAP in a human blood serum sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346(6287):818–22.

    Article  CAS  Google Scholar 

  2. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249(4968):505–10.

    Article  CAS  Google Scholar 

  3. Clark SL, Remcho VT. Aptamers as analytical reagents. Electrophoresis. 2002;23(9):1335–40.

    Article  CAS  Google Scholar 

  4. Kim D-K, Kerman K, Saito M, Sathuluri RR, Endo T, Yamamura S, et al. Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry. Anal Chem. 2007;79(5):1855–64.

    Article  CAS  Google Scholar 

  5. Minunni M, Tombelli S, Gullotto A, Luzi E, Mascini M. Development of biosensors with aptamers as bio-recognition element: the case of HIV-1 Tat protein. Biosens Bioelectron. 2004;20(6):1149–56.

    Article  CAS  Google Scholar 

  6. Patolsky F, Lichtenstein A, Willner I. Amplified microgravimetric quartz-crystal-microbalance assay of DNA using oligonucleotide-functionalized liposomes or biotinylated liposomes. J Am Chem Soc. 1999;122(2):418–9.

    Article  Google Scholar 

  7. Chang H, Tang L, Wang Y, Jiang J, Li J. Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal Chem. 2010;82(6):2341–6.

    Article  CAS  Google Scholar 

  8. Zuo X, Song S, Zhang J, Pan D, Wang L, Fan C. A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. J Am Chem Soc. 2007;129(5):1042–3.

    Article  CAS  Google Scholar 

  9. Feng K, Sun C, Kang Y, Chen J, Jiang J-H, Shen G-L, et al. Label-free electrochemical detection of nanomolar adenosine based on target-induced aptamer displacement. Electrochem Commun. 2008;10(4):531–5.

    Article  CAS  Google Scholar 

  10. Du Y, Li B, Wei H, Wang Y, Wang E. Multifunctional label-free electrochemical biosensor based on an integrated aptamer. Anal Chem. 2008;80(13):5110–7.

    Article  CAS  Google Scholar 

  11. Wang X, Zhou J, Yun W, Xiao S, Chang Z, He P, et al. Detection of thrombin using electrogenerated chemiluminescence based on Ru(bpy)3(2+)-doped silica nanoparticle aptasensor via target protein-induced strand displacement. Anal Chim Acta. 2007;598(2):242–8.

    Article  CAS  Google Scholar 

  12. Bruno JG, Kiel JL. Use of magnetic beads in selection and detection of biotoxin aptamers by electrochemiluminescence and enzymatic methods. Biotechniques. 2002;32(1):178–80. 182–173.

    CAS  Google Scholar 

  13. Chandra P, Noh HB, Won MS, Shim YB. Detection of daunomycin using phosphatidylserine and aptamer co-immobilized on Au nanoparticles deposited conducting polymer. Biosens Bioelectron. 2011;26(11):4442–9.

    Article  CAS  Google Scholar 

  14. Kashefi-Kheyrabadi L, Mehrgardi MA. Aptamer-conjugated silver nanoparticles for electrochemical detection of adenosine triphosphate. Biosens Bioelectron. 2012;37(1):94–8.

    Article  CAS  Google Scholar 

  15. Martín-Aranda R, Čejka J. Recent advances in catalysis over mesoporous molecular sieves. Top Catal. 2010;53(3–4):141–53.

    Article  Google Scholar 

  16. Barrosse-Antle LE, Bond AM, Compton RG, O'Mahony AM, Rogers EI, Silvester DS. Voltammetry in room temperature ionic liquids: comparisons and contrasts with conventional electrochemical solvents. Chem Asian J. 2010;5(2):202–30.

    Article  CAS  Google Scholar 

  17. Walker AJ, Bruce NC, Walker AJ, Bruce NC. Cofactor-dependent enzyme catalysis in functionalized ionic solvents. Chem Commun. 2004;22:2570–1.

    Article  Google Scholar 

  18. Fotouhi L, Shahrbanoo A, Omran M. Voltammetric response of furazolidone on multi-walled nanotube film coated carbon paste electrode using ionic liquid. Anal Bioanal Electrochem. 2013;5(3)283–90.

  19. Lai Y, Ma Y, Sun L, Jia J, Weng J, Hu N, et al. A highly selective electrochemical biosensor for Hg2+ using hemin as a redox indicator. Electrochim Acta. 2011;56(9):3153–8.

    Article  CAS  Google Scholar 

  20. Santos RM, Rodrigues MS, Laranjinha J, Barbosa RM. Biomimetic sensor based on hemin/carbon nanotubes/chitosan modified microelectrode for nitric oxide measurement in the brain. Biosens Bioelectron. 2013;44:152–9.

    Article  CAS  Google Scholar 

  21. Chinnapen DJF, Sen D. Hemin-stimulated docking of cytochrome c to a hemin − DNA aptamer complex. Biochemistry. 2002;41(16):5202–12.

    Article  CAS  Google Scholar 

  22. Alemu H, Hlalele L. Voltammetric determination of chloramphenicol at electrochemically pretreated glassy carbon electrode. Bull Chem Soc Ethiop. 2007;21(1):1–12.

  23. Pilehvar S, Mehta J, Dardenne F, Robbens J, Blust R, De Wael K. Aptasensing of chloramphenicol in the presence of its analogues: reaching the maximum residue limit. Anal Chem. 2012;84(15):6753–8.

    Article  CAS  Google Scholar 

  24. Viñas P, Balsalobre N, Hernández-Córdoba M. Determination of chloramphenicol residues in animal feeds by liquid chromatography with photo-diode array detection. Anal Chim Acta. 2006;558(1–2):11–5.

    Article  Google Scholar 

  25. Wang A, Zhang L, Fang Y. Determination and separation of chloramphenicol and its hydrolysate in eye-drops by capillary zone electrophoresis with amperometric detection. Anal Chim Acta. 1999;394(2–3):309–16.

    Article  CAS  Google Scholar 

  26. Rodziewicz L, Zawadzka I. Rapid determination of chloramphenicol residues in milk powder by liquid chromatography–electrospray ionization tandem mass spectrometry. Talanta. 2008;75(3):846–50.

    Article  CAS  Google Scholar 

  27. Abjean JP. Planar chromatography for the multiclass, multiresidue screening of chloramphenicol, nitrofuran, and sulfonamide residues in pork and beef. J AOAC Int. 1997;80(4):737–40.

    CAS  Google Scholar 

  28. Li P, Qiu Y, Cai H, Kong Y, Tang Y, Wang D, et al. Simultaneous determination of chloramphenicol, thiamphenicol, and florfenicol residues in animal tissues by gas chromatography/mass spectrometry. Chin J Chromatogr. 2006;24(1):14–8.

    Article  CAS  Google Scholar 

  29. Lindino CA, Bulhões LOS. Determination of chloramphenicol in tablets by electrogenerated chemiluminescence. J Braz Chem Soc. 2004;15:178–82.

    Article  CAS  Google Scholar 

  30. Collado MS, Mantovani VE, Goicoechea HC, Olivieri AC. Simultaneous spectrophotometric-multivariate calibration determination of several components of ophthalmic solutions: phenylephrine, chloramphenicol, antipyrine, methylparaben and thimerosal. Talanta. 2000;52(5):909–20.

    Article  CAS  Google Scholar 

  31. Bagheri Hashkavayi A, Bakhsh Raoof J, Ojani R, Hamidi Asl E. Label-free electrochemical aptasensor for determination of chloramphenicol based on gold nanocubes-modified screen-printed gold electrode. Electroanalysis. 2015;27(6):1449–56.

    Article  CAS  Google Scholar 

  32. Laschi S, Palchetti I, Marrazza G, Mascini M. Development of disposable low density screen-printed electrode arrays for simultaneous electrochemical measurements of the hybridisation reaction. J Electroanal Chem. 2006;593(1–2):211–8.

    Article  CAS  Google Scholar 

  33. Li H, Yang M, Pu Q. Palladium with spindle-like nitrogen ligand supported on mesoporous silica SBA-15: a tailored catalyst for homocoupling of alkynes and Suzuki coupling. Microporous Mesoporous Mater. 2012;148(1):166–73.

    Article  CAS  Google Scholar 

  34. Baharfar R, Azimi R. Immobilization of 1,4-diazabicyclo[2.2.2]Octane (DABCO) over mesoporous silica SBA-15: an efficient approach for the synthesis of functionalized spirochromenes. Synth Commun. 2014;44(1):89–100.

    Article  CAS  Google Scholar 

  35. Yuan C, Huang Z, Chen J. Basic ionic liquid supported on mesoporous SBA-15: an efficient heterogeneous catalyst for epoxidation of olefins with H2O2 as oxidant. Catal Commun. 2012;24:56–60.

    Article  CAS  Google Scholar 

  36. Kalita P, Kumar R. Immobilization of 1,5,7-triazabicyclo[4.4.0]dec-5-ene over mesoporous materials: an efficient catalyst for Michael-addition reactions under solvent-free condition. Appl Catal A Gen. 2011;397(1):250–8.

    Article  CAS  Google Scholar 

  37. Davarpanah J, Kiasat AR, Noorizadeh S, Ghahremani M. Nano magnetic double-charged diazoniabicyclo[2.2.2]octane dichloride silica hybrid: Synthesis, characterization, and application as an efficient and reusable organic–inorganic hybrid silica with ionic liquid framework for one-pot synthesis of pyran annulated heterocyclic compounds in water. J Mol Catal A Chem. 2013;376:78–89.

    Article  CAS  Google Scholar 

  38. Li J-H, Hu X-C, Xie Y-X. Polymer-supported DABCO–palladium complex as a stable and reusable catalyst for room temperature Suzuki–Miyaura cross-couplings of aryl bromides. Tetrahedron Lett. 2006;47(52):9239–43.

    Article  CAS  Google Scholar 

  39. Anand N, Ramudu P, Reddy KHP, Rao KSR, Jagadeesh B, Babu VSP, et al. Gold nanoparticles immobilized on lipoic acid functionalized SBA-15: synthesis, characterization and catalytic applications. Appl Catal A Gen. 2013;454:119–26.

    Article  CAS  Google Scholar 

  40. Karimi B, Vafaeezadeh M. SBA-15-functionalized sulfonic acid confined acidic ionic liquid: a powerful and water-tolerant catalyst for solvent-free esterifications. Chem Commun. 2012;48(27):3327–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jahan Bakhsh Raoof.

Ethics declarations

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this research result.

Healthy human serum sample for real sample analysis was supplied by the North Research Center, Pasteur Institute of Iran (Amol, Iran) with ethical approval.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 83.9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri Hashkavayi, A., Raoof, J.B., Azimi, R. et al. Label-free and sensitive aptasensor based on dendritic gold nanostructures on functionalized SBA-15 for determination of chloramphenicol. Anal Bioanal Chem 408, 2557–2565 (2016). https://doi.org/10.1007/s00216-016-9358-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9358-6

Keywords

Navigation