Skip to main content
Log in

Evaluation of the antibacterial activity of a cationic polymer in aqueous solution with a convenient electrochemical method

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Quaternized chitosan is a cationic biopolymer with good antibacterial activity, biocompatibility, and biodegradability, and it has been widely applied in many fields. We have developed a convenient method to evaluate the antibacterial activity of hydroxypropyltrimethylammonium chloride chitosan (HACC) with a nonionic surfactant poloxamer in aqueous solution by monitoring the change of the oxidation peak current in cyclic voltammetry. Increasing values of the oxidation peak current were positively correlated with the antibacterial activity of HACC–poloxamer solutions. Optical microscope images, the zeta potential, and fluorescence spectroscopy showed that the aggregation state of HACC–poloxamer was related to the ratio of the two polymers and also to the antibacterial activity and oxidation peak current. At an HACC-to-poloxamer ratio of 1:0.75, the maximum surface charge density and the smooth edge of HACC–poloxamer aggregates can accelerate diffusion in aqueous solution. It is expected that this convenient method can be applied for a quick evaluation of the antibacterial activity of cationic biopolymers in aqueous solution.

The cyclic voltammograms of MB in HACC/poloxamer solution, and the antibacterial efficiency against S. aureus after incubated with HACC (a) and 1/0.75 of HACC/poloxamer (b)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. An NT, Thien DT, Dong NT, Dung PL. Water-soluble N-carboxymethylchitosan derivatives: preparation, characteristics and its application. Carbohydr Polym. 2009;75:489–97.

    Article  Google Scholar 

  2. Rinaudo M, Auzely R, Vallin C, Mullagaliev I. Specific interactions in modified chitosan systems. Biomacromolecules. 2005;6:2396–407.

    Article  CAS  Google Scholar 

  3. De Leeuw BJ, Junginger HE, Verhoef JC. N-Trimethyl chitosan chloride as a potential absorption enhancer across mucosal surfaces in vitro evaluation in intestinal epithelial cells. Pharm Res. 1997;14:1197–202.

    Article  Google Scholar 

  4. Babak V, Lukina I, Vikhoreva G, Desbrieres J, Rinaudo M. Interfacial properties of dynamic association between chitin derivatives and surfactants. Colloid Surf A-Physicochem Eng. 1999;147

  5. Sandri G, Rossi S, Bonferoni MC, Ferrari F, Zambito Y, Colo GD, et al. Buccal penetration enhancement properties of N-trimethyl chitosan: influence of quaternization degree on absorption of a high molecular weight molecule. Int J Pharm. 2005;297:146–55.

    Article  CAS  Google Scholar 

  6. Tan H, Ma R, Lin C, Liu Z, Tang T. Quaternized chitosan as an antimicrobial agent: antimicrobial activity, mechanism of action and biomedical applications in orthopedics. Int J Mol Sci. 2013;14:1854–69.

    Article  CAS  Google Scholar 

  7. Sahariah P, Benediktssdóttir BE, Hjálmarsdóttir MÁ, Sigurjonsson OE, Sørensen KK, Thygesen MB, et al. Impact of chain length on antibacterial activity and hemocompatibility of quaternary N-alkyl and N, N-dialkyl chitosan derivatives. Biomacromolecules. 2015;16:1449–60.

    Article  CAS  Google Scholar 

  8. Másson M, Holappa J, Hjálmarsdóttir M, Rúnarsson ÖV, Nevalainen T, Järvinen T. Antimicrobial activity of piperazine derivatives of chitosan. Carbohydr Polym. 2008;74:566–71.

    Article  Google Scholar 

  9. Yang T, Chou C, Li C. Antibacterial activity of N-alkylated disaccharide chitosan derivatives. Int J Food Microbiol. 2005;97:237–45.

    Article  CAS  Google Scholar 

  10. Sajomsang W, Gonil P, Saesoo S. Synthesis and antibacterial activity of methylated N-(4-N, N-dimethylaminocinnamyl) chitosan chloride. Eur Polym J. 2009;45:2319–28.

    Article  CAS  Google Scholar 

  11. Peng Z, Wang L, Du L, Guo S, Wang X, Tang T. Adjustment of the antibacterial activity and biocompatibility of hydroxypropyltrimethyl ammonium chloride chitosan by varying the degree of substitution of quaternary ammonium. Carbohydr Polym. 2010;81:275–83.

    Article  CAS  Google Scholar 

  12. Guo Z, Xing R, Song L, Zhong Z, Xia J, Wang L, et al. The influence of molecular weight of quaternized chitosan on antifungal activity. Carbohydr Polym. 2008;71:694–7.

    Article  CAS  Google Scholar 

  13. Chi W, Qin C, Zeng L, Li W, Wang W. Microbiocidal activity of chitosan-N-2-hydroxypropyl trimethyl ammonium chloride. J Appl Polym Sci. 2007;103:3851–6.

    Article  CAS  Google Scholar 

  14. Yin Y, Zhang H, Nishinari K. Voltammetric characterization on the hydrophobic interaction in polysaccharide hydrogels. J Phys Chem B. 2007;111:1590–6.

    Article  CAS  Google Scholar 

  15. Fan L, Yang J, Wu H, Hu Z, Yi J, Tong J, et al. Preparation and characterization of quaternary ammonium chitosan hydrogel with significant antibacterial activity. Int J Biol Macromol. 2015;79:830–6.

    Article  CAS  Google Scholar 

  16. Jin Z, Li W, Cao H, Zhang X, Chen G, Wu H, et al. Antimicrobial activity and cytotoxicity of N-2-HACC and characterization of nanoparticles with N-2-HACC and CMC as a vaccine carrier. Chem Eng J. 2013;221:331–41.

    Article  CAS  Google Scholar 

  17. Sahariah P, Snorradóttir BS, Hjálmarsdóttir MÁ, Sigurjónsson ÓE, Másson M. Experimental design for determining quantitative structure activity relationship for antibacterial chitosan derivatives. J Mater Chem B. 2016;4:4762–70.

    Article  CAS  Google Scholar 

  18. Sajomsang W, Gonil P, Tantayanon S. Antibacterial activity of quaternary ammonium chitosan containing mono or disaccharide moieties: preparation and characterization. Int J Biol Macromol. 2009;44:419–27.

    Article  CAS  Google Scholar 

  19. Bhowmick A, Jana P, Pramanik N, Mitra T, Banerjee SL, Gnanamani A, et al. Multifunctional zirconium oxide doped chitosan based hybrid nanocomposites as bone tissue engineering materials. Carbohydr Polym. 2016;151:879–88.

    Article  CAS  Google Scholar 

  20. Tamer TM, Hassan MA, Omer AM, Baset WMA, Hassan ME, El-Shafeey MEA, et al. Synthesis, characterization and antimicrobial evaluation of two aromatic chitosan Schiff base derivatives. Process Biochem. 2016;51:1721–30.

    Article  CAS  Google Scholar 

  21. Yang X, Guo Y, Liu J, Yan L, Zhong J, Feng R. Study of the effects of pyrene probe concentration and solution polarity on the self-association behavior of hydrophobically associating polymer by steady-state fluorescence. Appl Chem Ind. 2013;42:195–9.

    CAS  Google Scholar 

  22. Liu P, Meng W, Wang S, Sun Y, Ashraf MA. Quaternary ammonium salt of chitosan: preparation and antimicrobial property for paper. Open Med. 2015;10:473–8.

    Google Scholar 

  23. Vallapa N, Wiarachai O, Thongchul N, Pan J, Tangpasuthadol V, Kiatkamjornwong S, et al. Enhancing antibacterial activity of chitosan surface by heterogeneous quaternization. Carbohydr Polym. 2011;83:868–75.

    Article  CAS  Google Scholar 

  24. Shen H, Yin Y, Zhang H. An electrochemical study of the hydrophobic interaction of methylcellulose. Acta Chim Sin. 2005;63:1621–5.

    CAS  Google Scholar 

  25. Carter MT, Rodriguez M, Bard AJ. Voltammetric Studies of the interaction of metal chelates with DNA. 2. Tris-chelated complexes of cobalt(111) and iron(11) with 1,10-phenanthroline and 2,2'-bipyridine. J Am Chem Soc. 1989;111:8901–11.

    Article  CAS  Google Scholar 

  26. Fu X, Shen W, Yao T, Hou W. Physical chemistry. 5th ed. Beijing: Higher Education Press; 2006.

    Google Scholar 

  27. Grant J, Lee H, Liu RCW, Allen C. Intermolecular interactions and morphology of aqueous polymer/surfactant mixtures containing cationic chitosan and nonionic sorbitan esters. Biomacromolecules. 2008;9:2146–52.

    Article  CAS  Google Scholar 

  28. Siu H, Duhamel J. Associations between a pyrene-labeled hydrophobically modified alkali swellable emulsion copolymer and sodium dodecyl sulfate probed by fluorescence, surface tension, and viscometry. Macromolecules. 2006;39:1144–55.

    Article  CAS  Google Scholar 

  29. Worm M, Kang B, Dingels C, Wurm FR, Frey H. Acid-labile amphiphilic PEO-b-PPO-b-PEO copolymers: degradable poloxamer analogs. Macromol Rapid Commun. 2016;37:775–80.

    Article  CAS  Google Scholar 

  30. Schillén K, Jansson J, Löf D, Costa T. Mixed micelles of a PEO-PPO-PEO triblock copolymer (P123) and a nonionic surfactant (C12EO6) in water. a dynamic and static light scattering study. J Phys Chem B. 2008;112:5551–62.

    Article  Google Scholar 

  31. Nambam JS, Philip J. Effects of interaction of ionic and nonionic surfactants on self-assembly of PEO–PPO–PEO triblock copolymer in aqueous solution. J Phys Chem B. 2012;116:1499–507.

    Article  CAS  Google Scholar 

  32. Li Y, Hao J, Li G. Electrochemical behavior of cationic‐anionic surfactant solutions by cyclic voltammetry. J Dispers Sci Technol. 2006.

  33. Bard AJ, Faulkner LR. Electrochemistry methods fundamentals and applications. 2nd ed. New York: Wiley; 2003.

    Google Scholar 

  34. Li W, Xiao L, Qin C. Synthesis and relevant electrochemical properties of 2-hydroxypropyltrimethyl ammonium chloride chitosan-grafted multiwalled carbon nanotubes. J Mater Sci. 2010;45:5915–22.

    Article  CAS  Google Scholar 

  35. Tsai G, Hwang S. In vitro and in vivo antibacterial activity of shrimp chitosan against some intestinal bacteria. Fish Sci. 2004;70:675–81.

    Article  CAS  Google Scholar 

  36. Je J, Kim S. Chitosan derivatives killed bacteria by disrupting the outer and inner membrane. J Agric Food Chem. 2006;54:6629–33.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundations of China (81571812), the Priority Academic Program Development of Jiangsu Higher Education Institutions (1107047002), and Hydron Contact Lens Co. (8507040152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 212 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Guo, Q., Wang, H. et al. Evaluation of the antibacterial activity of a cationic polymer in aqueous solution with a convenient electrochemical method. Anal Bioanal Chem 409, 1627–1633 (2017). https://doi.org/10.1007/s00216-016-0105-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-0105-9

Keywords

Navigation