Skip to main content
Log in

Liquid chromatographic/electrospray ionization quadrupole/time of flight tandem mass spectrometric study of polyphenolic composition of different Vaccinium berry species and their comparative evaluation

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Ultra-high-performance liquid chromatography coupled with high-resolution quadrupole-time of flight mass spectrometry with both negative and positive ionization was used for comprehensively investigating the phenolic and polyphenolic compounds in berries from three spontaneous or cultivated Vaccinium species (i.e., Vaccinium myrtillus, Vaccinium uliginosum subsp. gaultherioides, and Vaccinium corymbosum). More than 200 analytes, among phenolic and polyphenolic compounds belonging to the classes of anthocyanins, monomeric and oligomeric flavonols, flavanols, dihydrochalcones, phenolic acids, together with other polyphenolic compounds of mixed structural characteristics, were identified. Some of the polyphenols herein investigated, such as anthocyanidin glucuronides and malvidin-feruloyl-hexosides in V. myrtillus, or anthocyanindin aldopentosides and coumaroyl-hexosides in V. uliginosum subsp. gaultherioides and a large number of proanthocyanidins with high molecular weight in all species, were described for the first time in these berries. Principal component analysis applied on original LC-TOF data, acquired in survey scan mode, successfully discriminated the three Vaccinium berry species investigated, on the basis of their polyphenolic composition, underlying one more time the fundamental role of mass spectrometry for food characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Paredes-López O, Cervantes-Ceja M, Vigna-Pérez M, Hernández-Pérez T. Berries: improving human health and healthy aging, and promoting quality life—a review. Plant Foods Hum Nutr. 2010;65(3):299–308.

    Article  Google Scholar 

  2. Ignat I, Volf I, Popa VI. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 2011;126(4):1821–35.

    Article  CAS  Google Scholar 

  3. Daglia M. Polyphenols as antimicrobial agents. Curr Opin Biotechnol. 2012;23(2):174–81.

    Article  CAS  Google Scholar 

  4. Ancillotti C, Ciofi L, Pucci D, Sagona E, Giordani E, Biricolti S, et al. Polyphenolic profiles and antioxidant and antiradical activity of Italian berries from Vaccinium myrtillus L. and Vaccinium uliginosum L. subsp. gaultherioides (Bigelow) S.B. Young. Food Chem. 2016;204:176–84.

    Article  CAS  Google Scholar 

  5. Määttä-Riihinen KR, Kamal-Eldin A, Mattila PH, González-Paramás AM, Törrönen AR. Distribution and contents of phenolic compounds in eighteen Scandinavian berry species. J Agric Food Chem. 2004;52(14):4477–86.

    Article  Google Scholar 

  6. Beccaro G, Mellano MG, Botta R, Chiabrando V, Bounous G, editors. Phenolic and anthocyanin content and antioxidant activity in fruits of bilberry (Vaccinium myrtillus L.) and of highbush blueberry (V. corymbosum L.) cultivars in north Western Italy. Leuven: International Society for Horticultural Science (ISHS); 2006.

    Google Scholar 

  7. Može Š, Polak T, Gašperlin L, Koron D, Vanzo A, Poklar Ulrih N, et al. Phenolics in Slovenian bilberries (Vaccinium myrtillus L.) and blueberries (Vaccinium corymbosum L.). J Agric Food Chem. 2011;59(13):6998–7004.

    Article  Google Scholar 

  8. Lätti AK, Riihinen KR, Kainulainen PS. Analysis of anthocyanin variation in wild populations of bilberry (Vaccinium myrtillus L.) in Finland. J Agric Food Chem. 2008;56(1):190–6.

    Article  Google Scholar 

  9. Jovančević M, Balijagić J, Menković N, Šavikin K, Zdunić G, Janković T, et al. Analysis of phenolic compounds in wild populations of bilberry (Vaccinium myrtillus L.) from Montenegro. J Med Plant Res. 2011;5(6):910–4.

    Google Scholar 

  10. Giovanelli G, Buratti S. Comparison of polyphenolic composition and antioxidant activity of wild Italian blueberries and some cultivated varieties. Food Chem. 2009;112(4):903–8.

    Article  CAS  Google Scholar 

  11. Åkerström A, Jaakola L, Bång U, Jäderlund A. Effects of latitude-related factors and geographical origin on anthocyanidin concentrations in fruits of Vaccinium myrtillus L. (bilberries). J Agric Food Chem. 2010;58(22):11939–45.

    Article  Google Scholar 

  12. Laaksonen O, Sandell M, Kallio H. Chemical factors contributing to orosensory profiles of bilberry (Vaccinium myrtillus) fractions. Eur Food Res Technol. 2010;231(2):271–85.

    Article  CAS  Google Scholar 

  13. Mikulic-Petkovsek M, Schmitzer V, Slatnar A, Stampar F, Veberic R. A comparison of fruit quality parameters of wild bilberry (Vaccinium myrtillus L.) growing at different locations. J Sci Food Agric. 2015;95(4):776–85.

    Article  CAS  Google Scholar 

  14. Gavrilova V, Kajdžanoska M, Gjamovski V, Stefova M. Separation, characterization and quantification of phenolic compounds in blueberries and red and black currants by HPLC–DAD–ESI-MSn. J Agric Food Chem. 2011;59(8):4009–18.

    Article  CAS  Google Scholar 

  15. Del Bubba M, Checchini L, Chiuminatto U, Doumett S, Fibbi D, Giordani E. Liquid chromatographic/electrospray ionization tandem mass spectrometric study of polyphenolic composition of four cultivars of Fragaria vesca L. berries and their comparative evaluation. J Mass Spectrom. 2012;47(9):1207–20.

    Article  Google Scholar 

  16. Sun J, Liu X, Yang T, Slovin J, Chen P. Profiling polyphenols of two diploid strawberry (Fragaria vesca) inbred lines using UHPLC-HRMS(n). Food Chem. 2014;146:289–98.

    Article  CAS  Google Scholar 

  17. Ieri F, Martini S, Innocenti M, Mulinacci N. Phenolic distribution in liquid preparations of Vaccinium myrtillus L. and Vaccinium vitis idaea L. Phytochem Anal. 2013;24(5):467–75.

    Article  CAS  Google Scholar 

  18. Ramirez JE, Zambrano R, Sepúlveda B, Kennelly EJ, Simirgiotis MJ. Anthocyanins and antioxidant capacities of six Chilean berries by HPLC–HR-ESI-ToF-MS. Food Chem. 2015;176:106–14.

    Article  CAS  Google Scholar 

  19. Liu P, Lindstedt A, Markkinen N, Sinkkonen J, Suomela J-P, Yang B. Characterization of metabolite profiles of leaves of bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.). J Agric Food Chem. 2014;62(49):12015–26.

    Article  CAS  Google Scholar 

  20. van der Hooft JJ, Vervoort J, Bino RJ, Beekwilder J, de Vos RC. Polyphenol identification based on systematic and robust high-resolution accurate mass spectrometry fragmentation. Anal Chem. 2010;83(1):409–16.

    Article  Google Scholar 

  21. Beccaro GL, Giongo L, De Salvador FR, Ughini V, Folini L, Draicchio P, et al. Scegliere le cultivar di lampone, mirtillo e rovo per il 2011. L’Informatore Agrario. 2011;20:58–61 (In Italian).

    Google Scholar 

  22. Doumett S, Fibbi D, Cincinelli A, Giordani E, Nin S, Del Bubba M. Comparison of nutritional and nutraceutical properties in cultivated fruits of Fragaria vesca L. produced in Italy. Food Res Int. 2011;44(5):1209–16.

    Article  CAS  Google Scholar 

  23. Barnes JS, Nguyen HP, Shen S, Schug KA. General method for extraction of blueberry anthocyanins and identification using high performance liquid chromatography–electrospray ionization-ion trap-time of flight-mass spectrometry. J Chromatogr A. 2009;1216(23):4728–35.

    Article  CAS  Google Scholar 

  24. Sun J, Lin L, Chen P. Study of the mass spectrometric behaviors of anthocyanins in negative ionization mode and its applications for characterization of anthocyanins and non-anthocyanin polyphenols. Rapid Commun Mass Spectrom. 2012;26(9):1123–33.

    Article  CAS  Google Scholar 

  25. Lätti AK, Riihinen KR, Jaakola L. Phenolic compounds in berries and flowers of a natural hybrid between bilberry and lingonberry (Vaccinium × intermedium Ruthe). Phytochemistry. 2011;72(8):810–5.

    Article  Google Scholar 

  26. Veberic R, Slatnar A, Bizjak J, Stampar F, Mikulic-Petkovsek M. Anthocyanin composition of different wild and cultivated berry species. LWT Food Sci Technol. 2015;60(1):509–17.

    Article  CAS  Google Scholar 

  27. Oliveira M, Esperanca P, Ferreira A. Characterisation of anthocyanidins by electrospray ionisation and collision-induced dissociation tandem mass spectrometry. Rapid Commun Mass Spectrom. 2001;15(17):1525–32.

    Article  CAS  Google Scholar 

  28. Giusti MM, Rodríguez-Saona LE, Griffin D, Wrolstad RE. Electrospray and tandem mass spectroscopy as tools for anthocyanin characterization. J Agric Food Chem. 1999;47(11):4657–64.

    Article  CAS  Google Scholar 

  29. Wu X, Prior RL. Systematic identification and characterization of anthocyanins by HPLC-ESI-MS/MS in common foods in the United States: fruits and berries. J Agric Food Chem. 2005;53(7):2589–99.

    Article  CAS  Google Scholar 

  30. Felgines C, Talavera S, Texier O, Gil-Itsquierdo A, Lamaison JL, Remesy C. Blachberry anthocyanins are mainly recovered from urine as methylated and glucuronidated conjugates in humans. J Agric Food Chem. 2005;53(20):7721–7.

    Article  CAS  Google Scholar 

  31. Ferrars R, Czank C, Zhang Q, Botting N, Kroon P, Cassidy A, et al. The pharmacokinetics of anthocyanins and their metabolites in humans. Brit J Pharmacol. 2014;171(13):3268–82.

    Article  Google Scholar 

  32. Du Q, Jerz G, Winterhalter P. Isolation of two anthocyanin sambubiosides from bilberry (Vaccinium myrtillus) by high-speed counter-current chromatography. J Chromatogr A. 2004;1045(1):59–63.

    Article  CAS  Google Scholar 

  33. Paes J, Dotta R, Barbero GF, Martínez J. Extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium myrtillus L.) residues using supercritical CO2 and pressurized liquids. J Supercrit Fluids. 2014;95:8–16.

    Article  CAS  Google Scholar 

  34. Lätti AK, Jaakola L, Riihinen KR, Kainulainen PS. Anthocyanin and flavonol variation in bog bilberries (Vaccinium uliginosum L.) in Finland. J Agric Food Chem. 2010;58(1):427–33.

    Article  Google Scholar 

  35. Zoratti L, Jaakola L, Häggman H, Giongo L. Anthocyanin profile in berries of wild and cultivated Vaccinium spp. along altitudinal gradients in the Alps. J Agric Food Chem. 2015;63(39):8641–50.

    Article  CAS  Google Scholar 

  36. He J-J, Liu Y-X, Pan Q-H, Cui X-Y, Duan C-Q. Different anthocyanin profiles of the skin and the pulp of Yan73 (Muscat Hamburg × Alicante Bouschet) grape berries. Molecules. 2010;15(3):1141–53.

    Article  CAS  Google Scholar 

  37. Cuyckens F, Claeys M. Mass spectrometry in the structural analysis of flavonoids. J Mass Spectrom. 2004;39(1):1–15.

    Article  CAS  Google Scholar 

  38. Lu L, Song FR, Tsao R, Jin YR, Liu ZQ, Liu SY. Studies on the homolytic and heterolytic cleavage of kaempferol and kaempferide glycosides using electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom. 2010;24(1):169–72.

    Article  CAS  Google Scholar 

  39. Justesen U. Collision-induced fragmentation of deprotonated methoxylated flavonoids, obtained by electrospray ionization mass spectrometry. J Mass Spectrom. 2001;36(2):169–78.

    Article  CAS  Google Scholar 

  40. Domon B, Costello CE. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj J. 1988;5(4):397–409.

    Article  CAS  Google Scholar 

  41. Ma Y, Li Q, Van den Heuvel H, Claeys M. Characterization of flavone and flavonol aglycones by collision-induced dissociation tandem mass spectrometry. Rapid Commun Mass Spectrom. 1997;11(12):1357–64.

    Article  CAS  Google Scholar 

  42. Cuyckens F, Claeys M. Determination of the glycosylation site in flavonoid mono-O-glycosides by collision-induced dissociation of electrospray-generated deprotonated and sodiated molecules. J Mass Spectrom. 2005;40(3):364–72.

    Article  CAS  Google Scholar 

  43. Petsalo A, Jalonen J, Tolonen A. Identification of flavonoids of Rhodiola rosea by liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2006;1112(1):224–31.

    Article  CAS  Google Scholar 

  44. Hokkanen J, Mattila S, Jaakola L, Pirttilä AM, Tolonen A. Identification of phenolic compounds from lingonberry (Vaccinium vitis-idaea L.), bilberry (Vaccinium myrtillus L.) and hybrid bilberry (Vaccinium x intermedium Ruthe L.) leaves. J Agric Food Chem. 2009;57(20):9437–47.

    Article  CAS  Google Scholar 

  45. Gómez-Romero M, Zurek G, Schneider B, Baessmann C, Segura-Carretero A, Fernández-Gutiérrez A. Automated identification of phenolics in plant-derived foods by using library search approach. Food Chem. 2011;124(1):379–86.

    Article  Google Scholar 

  46. Simirgiotis MJ, Theoduloz C, Caligari PD, Schmeda-Hirschmann G. Comparison of phenolic composition and antioxidant properties of two native Chilean and one domestic strawberry genotypes. Food Chem. 2009;113(2):377–85.

    Article  CAS  Google Scholar 

  47. Teixeira N, Azevedo J, Mateus N, de Freitas V. Proanthocyanidin screening by LC–ESI-MS of Portuguese red wines made with teinturier grapes. Food Chem. 2016;190:300–7.

    Article  CAS  Google Scholar 

  48. Jensen HD, Krogfelt KA, Cornett C, Hansen SH, Christensen SB. Hydrophilic carboxylic acids and iridoid glycosides in the juice of American and European cranberries (Vaccinium macrocarpon and V. oxycoccos), lingonberries (V. vitis-idaea), and blueberries (V. myrtillus). J Agric Food Chem. 2002;50(23):6871–4.

    Article  CAS  Google Scholar 

  49. Nonaka G, Nishioka I. Tannins and related compounds. VII. Phenylpropanoid-substituted epicatechins, cinchonains from Cinchona succirubra. Chem Pharm Bull. 1982;30:4268–76.

    Article  CAS  Google Scholar 

  50. Matsuo Y, Fujita Y, Ohnishi S, Tanaka T, Hirabaru H, Kai T, et al. Chemical constituents of the leaves of rabbiteye blueberry (Vaccinium ashei) and characterisation of polymeric proanthocyanidins containing phenylpropanoid units and A-type linkages. Food Chem. 2010;121(4):1073–9.

    Article  CAS  Google Scholar 

  51. Cho MJ, Howard LR, Prior RL, Clark JR. Flavonoid glycosides and antioxidant capacity of various blackberry, blueberry and red grape genotypes determined by high-performance liquid chromatography/mass spectrometry. J Sci Food Agric. 2004;84(13):1771–82.

    Article  Google Scholar 

  52. Vrhovsek U, Masuero D, Palmieri L, Mattivi F. Identification and quantification of flavonol glycosides in cultivated blueberry cultivars. J Food Compos Anal. 2012;25(1):9–16.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by Regione Toscana and the private companies “Il Baggiolo S.r.l.,” Danti Giampiero & C. S.n.c.,” “Azienda Agricola Il Sottobosco,” and “Farmaceutica MEV S.r.l.,” within the “PRAF Misura 1.2. e)” grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Del Bubba.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1213 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ancillotti, C., Ciofi, L., Rossini, D. et al. Liquid chromatographic/electrospray ionization quadrupole/time of flight tandem mass spectrometric study of polyphenolic composition of different Vaccinium berry species and their comparative evaluation. Anal Bioanal Chem 409, 1347–1368 (2017). https://doi.org/10.1007/s00216-016-0067-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-0067-y

Keywords

Navigation