Skip to main content
Log in

DNA sequence-dependent fluorescence of doxorubicin for turn-on detection of biothiols in human serum

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Doxorubicin (Dox) is a DNA-targeting anthracycline antibiotic active against a wide spectrum of cancers. The interaction between Dox and double-stranded DNA (dsDNA) was used to load Dox using DNA duplexes as carriers. More importantly, the interesting DNA sequence-dependent fluorescence response of Dox could be exploited in the design of efficient Dox release systems and efficient fluorescence sensors. In this work, we demonstrated that separate introduction of G and C bases into T-rich single-stranded DNA (ssDNA) sequences afforded the best discrimination of Dox binding between dsDNA and ssDNA. For the first time, we successfully utilized this interesting DNA sequence-dependent fluorescence response of Dox as a signal transduction mechanism for the sensitive detection of biothiols in human serum. Cysteine, homocysteine, and glutathione were detected at as low as 26 nM, 37 nM, and 29 nM, respectively. The biosensors exhibited not only good selectivity, stability, and sensitivity in aqueous solutions but also a sensitive response in human serum, demonstrating their potential for diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wood ZA, Schröder E, Robin Harris J, Poole LB (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28(1):32–40

    Article  CAS  Google Scholar 

  2. Meister A, Anderson ME (1983) Glutathione. Ann Rev Biochem 52(1):711–760

    Article  CAS  Google Scholar 

  3. Dalton TP, Shertzer HG, Puga A (1999) Regulation of gene expression by reactive oxygen. Ann Rev Pharmacol Toxicol 39(1):67–101

    Article  CAS  Google Scholar 

  4. Dröge W, Holm E (1997) Role of cysteine and glutathione in HIV infection and other diseases associated with muscle wasting and immunological dysfunction. FASEB J 11(13):1077–1089

    Google Scholar 

  5. Brattström L, Wilcken DE (2000) Homocysteine and cardiovascular disease: cause or effect? Am J Clin Nutr 72(2):315–323

    Google Scholar 

  6. Perry IJ, Morris RW, Ebrahim SB, Shaper AG, Refsum H, Ueland PM (1995) Prospective study of serum total homocysteine concentration and risk of stroke in middle-aged British men. Lancet 346(8987):1395–1398

    Article  CAS  Google Scholar 

  7. Herzenberg LA, De Rosa SC, Dubs JG, Roederer M, Anderson MT, Ela SW, Deresinski SC, Herzenberg LA (1997) Glutathione deficiency is associated with impaired survival in HIV disease. Proc Natl Acad Sci U S A 94(5):1967–1972

    Article  CAS  Google Scholar 

  8. Deng C, Chen J, Chen X, Wang M, Nie Z, Yao S (2009) Electrochemical detection of l-cysteine using a boron-doped carbon nanotube-modified electrode. Electrochim Acta 54(12):3298–3302

    Article  CAS  Google Scholar 

  9. Zhou X-H, Kong D-M, Shen H-X (2009) Ag+ and cysteine quantitation based on G-quadruplex − hemin DNAzymes disruption by Ag+. Anal Chem 82(3):789–793

    Article  Google Scholar 

  10. You J, Hu H, Zhou J, Zhang L, Zhang Y, Kondo T (2013) Novel cellulose polyampholyte–gold nanoparticle-based colorimetric competition assay for the detection of cysteine and mercury(II). Langmuir 29(16):5085–5092

    Article  CAS  Google Scholar 

  11. Li Y, Li Z, Gao Y, Gong A, Zhang Y, Hosmane NS, Shen Z, Wu A (2014) "Red-to-blue" colorimetric detection of cysteine via anti-etching of silver nanoprisms. Nanoscale 6(18):10631–10637

    Article  CAS  Google Scholar 

  12. Kubalczyk P, Bald E (2009) Analysis of orange juice for total cysteine and glutathione content by CZE with UV-absorption detection. Electrophoresis 30(13):2280–2283. doi:10.1002/elps.200800741

    Article  CAS  Google Scholar 

  13. Jacobsen DW, Gatautis VJ, Green R, Robinson K, Savon SR, Secic M, Ji J, Otto JM, Taylor LM (1994) Rapid HPLC determination of total homocysteine and other thiols in serum and plasma: sex differences and correlation with cobalamin and folate concentrations in healthy subjects. Clin Chem 40(6):873–881

    CAS  Google Scholar 

  14. Chwatko G, Bald E (2000) Determination of cysteine in human plasma by high-performance liquid chromatography and ultraviolet detection after pre-column derivatization with 2-chloro-1-methylpyridinium iodide. Talanta 52(3):509–515

    Article  CAS  Google Scholar 

  15. Głowacki R, Bald E (2009) Fully automated method for simultaneous determination of total cysteine, cysteinylglycine, glutathione and homocysteine in plasma by HPLC with UV absorbance detection. J Chromatogr, B 877(28):3400–3404

    Article  Google Scholar 

  16. Chen X, Zhou Y, Peng X, Yoon J (2010) Fluorescent and colorimetric probes for detection of thiols. Chem Soc Rev 39(6):2120–2135

    Article  CAS  Google Scholar 

  17. Hao Y, Xiong D, Wang L, Chen W, Zhou B, Liu Y-N (2013) A reversible competition colorimetric assay for the detection of biothiols based on ruthenium-containing complex. Talanta 115:253–257

    Article  CAS  Google Scholar 

  18. Han B, Yuan J, Wang E (2009) Sensitive and selective sensor for biothiols in the cell based on the recovered fluorescence of the CdTe quantum dots − Hg(II) system. Anal Chem 81(13):5569–5573

    Article  CAS  Google Scholar 

  19. Zhang Y, Li Y, Yan X-P (2009) Photoactivated CdTe/CdSe quantum dots as a near infrared fluorescent probe for detecting biothiols in biological fluids. Anal Chem 81(12):5001–5007

    Article  CAS  Google Scholar 

  20. Wu Z, Li W, Chen J, Yu C (2014) A graphene quantum dot-based method for the highly sensitive and selective fluorescence turn on detection of biothiols. Talanta 119:538–543

    Article  CAS  Google Scholar 

  21. Hua L, Han H, Zhang X (2009) Size-dependent electrochemiluminescence behavior of water-soluble CdTe quantum dots and selective sensing of l-cysteine. Talanta 77(5):1654–1659

    Article  CAS  Google Scholar 

  22. Hou J, Zhang F, Yan X, Wang L, Yan J, Ding H, Ding L (2015) Sensitive detection of biothiols and histidine based on the recovered fluorescence of the carbon quantum dots–Hg(II) system. Anal Chim Acta 859:72–78

    CAS  Google Scholar 

  23. Yuan X, Tay Y, Dou X, Luo Z, Leong DT, Xie J (2012) Glutathione-protected silver nanoclusters as cysteine-selective fluorometric and colorimetric probe. Anal Chem 85(3):1913–1919

    Article  Google Scholar 

  24. Park KS, Kim MI, Woo M-A, Park HG (2013) A label-free method for detecting biological thiols based on blocking of Hg2+-quenching of fluorescent gold nanoclusters. Biosens Bioelectron 45:65–69

    Article  Google Scholar 

  25. Chen Z, Lu D, Cai Z, Dong C, Shuang S (2014) Bovine serum albumin-confined silver nanoclusters as fluorometric probe for detection of biothiols. Luminescence 29(7):722–727

    Article  CAS  Google Scholar 

  26. Zhang L, Cai Q-Y, Li J, Ge J, Wang J-Y, Dong Z-Z, Li Z-H (2015) A label-free method for detecting biothiols based on poly(thymine)-templated copper nanoparticles. Biosens Bioelectron 69:77–82

    Article  CAS  Google Scholar 

  27. Zhou D-L, Huang H, Zheng J-N, Chen J-R, Feng J-J, Wang A-J (2013) Polyinosinic acid-stabilized fluorescent silver nanoclusters for sensitive detection of biological thiols. Anal Methods 5(21):6076–6080

    Article  CAS  Google Scholar 

  28. Shi Y, Pan Y, Zhang H, Zhang Z, Li M-J, Yi C, Yang M (2014) A dual-mode nanosensor based on carbon quantum dots and gold nanoparticles for discriminative detection of glutathione in human plasma. Biosens Bioelectron 56:39–45

    Article  CAS  Google Scholar 

  29. Shen L-M, Chen Q, Sun Z-Y, Chen X-W, Wang J-H (2014) Assay of biothiols by regulating the growth of silver nanoparticles with C-dots as reducing agent. Anal Chem 86(10):5002–5008

    Article  CAS  Google Scholar 

  30. Pu F, Huang Z, Ren J, Qu X (2010) DNA/ligand/ion-based ensemble for fluorescence turn on detection of cysteine and histidine with tunable dynamic range. Anal Chem 82(19):8211–8216

    Article  CAS  Google Scholar 

  31. Xu H, Hepel M (2011) “Molecular beacon”-based fluorescent assay for selective detection of glutathione and cysteine. Anal Chem 83(3):813–819

    Article  CAS  Google Scholar 

  32. Leung K-H, He H-Z, Ma VP-Y, Chan DS-H, Leung C-H, Ma D-L (2013) A luminescent G-quadruplex switch-on probe for the highly selective and tunable detection of cysteine and glutathione. Chem Commun 49(8):771–773

    Article  CAS  Google Scholar 

  33. L-l T, Li L, Chen Z, Wang Q, Tang B (2013) Stable label-free fluorescent sensing of biothiols based on ThT direct inducing conformation-specific G-quadruplex. Biosens Bioelectron 49:420–425

    Article  Google Scholar 

  34. Zhang M, Le H-N, Jiang X-Q, Ye B-C (2013) "Molecular beacon"-directed fluorescence of Hoechst dyes for visual detection of Hg(II) and biothiols and its application for a logic gate. Chem Commun 49(21):2133–2135

    Article  CAS  Google Scholar 

  35. Zhao J, Chen C, Zhang L, Jiang J, Shen G, Yu R (2013) A Hg2+-mediated label-free fluorescent sensing strategy based on G-quadruplex formation for selective detection of glutathione and cysteine. Analyst (Cambridge, U K) 138(6):1713–1718

    Article  CAS  Google Scholar 

  36. Zhang M, Le H-N, Jiang X-Q, Yin B-C, Ye B-C (2013) Time-resolved probes based on guanine/thymine-rich dna-sensitized luminescence of terbium(III). Anal Chem 85(23):11665–11674

    Article  CAS  Google Scholar 

  37. Chen Z, Zhou L, Zhao A, Zhang Z, Wang Z, Lin Y, Ren J, Qu X (2014) Coupling exonuclease III with DNA metallization for amplified detection of biothiols at picomolar concentration. Biosens Bioelectron 58:214–218

    Article  CAS  Google Scholar 

  38. He H-Z, Chan DS-H, Leung C-H, Ma D-L (2013) G-quadruplexes for luminescent sensing and logic gates. Nucleic Acids Res 41(8):4345–4359

    Article  CAS  Google Scholar 

  39. Ma D-L, He H-Z, Leung K-H, Zhong H-J, Chan DS-H, Leung C-H (2013) Label-free luminescent oligonucleotide-based probes. Chem Soc Rev 42(8):3427–3440

    Article  CAS  Google Scholar 

  40. Chaires JB, Herrera JE, Waring MJ (1990) Preferential binding of daunomycin to 5'TACG and 5'TAGC sequences revealed by footprinting titration experiments. Biochemistry 29(26):6145–6153

    Article  CAS  Google Scholar 

  41. Frederick CA, Williams LD, Ughetto G, Van der Marel GA, Van Boom JH, Rich A, Wang AHJ (1990) Structural comparison of anticancer drug-DNA complexes: adriamycin and daunomycin. Biochemistry 29(10):2538–2549

    Article  CAS  Google Scholar 

  42. Gewirtz D (1999) A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 57(7):727–741

    Article  CAS  Google Scholar 

  43. Raichlin S, Sharon E, Freeman R, Tzfati Y, Willner I (2011) Electron-transfer quenching of nucleic acid-functionalized CdSe/ZnS quantum dots by doxorubicin: a versatile system for the optical detection of DNA, aptamer–substrate complexes and telomerase activity. Biosens Bioelectron 26(12):4681–4689

    Article  CAS  Google Scholar 

  44. Bagalkot V, Farokhzad OC, Langer R, Jon S (2006) An aptamer–doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew Chem Int Ed 45(48):8149–8152

    Article  CAS  Google Scholar 

  45. Qiao G, Zhuo L, Gao Y, Yu L, Li N, Tang B (2011) A tumor mRNA-dependent gold nanoparticle-molecular beacon carrier for controlled drug release and intracellular imaging. Chem Commun 47(26):7458–7460

    Article  CAS  Google Scholar 

  46. Xiao Z, Ji C, Shi J, Pridgen EM, Frieder J, Wu J, Farokhzad OC (2012) DNA self-assembly of targeted near-infrared-responsive gold nanoparticles for cancer thermo-chemotherapy. Angew Chem Int Ed 51(47):11853–11857

    Article  CAS  Google Scholar 

  47. Zhu G, Zheng J, Song E, Donovan M, Zhang K, Liu C, Tan W (2013) Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics. Proc Natl Acad Sci U S A 110(20):7998–8003

    Article  CAS  Google Scholar 

  48. Pan W, Yang H, Zhang T, Li Y, Li N, Tang B (2013) Dual-targeted nanocarrier based on cell surface receptor and intracellular mRNA: an effective strategy for cancer cell imaging and therapy. Anal Chem 85(14):6930–6935

    Article  CAS  Google Scholar 

  49. Li N, Yang H, Pan W, Diao W, Tang B (2014) A tumour mRNA-triggered nanocarrier for multimodal cancer cell imaging and therapy. Chem Commun 50(56):7473–7476

    Article  CAS  Google Scholar 

  50. Mo R, Jiang T, Gu Z (2014) Enhanced anticancer efficacy by ATP-mediated liposomal drug delivery. Angew Chem Int Ed 53(23):5815–5820

    Article  CAS  Google Scholar 

  51. Mo R, Jiang T, DiSanto R, Tai W, Gu Z (2014) ATP-triggered anticancer drug delivery. Nat Commun 5

  52. DuVernay VH Jr, Pachter JA, Crooke ST (1979) Deoxyribonucleic acid binding studies on several new anthracycline antitumor antibiotics. Sequence preference and structure–activity relationships of marcellomycin and its analogues as compared to adriamycin. Biochemistry 18(18):4024–4030

    Article  CAS  Google Scholar 

  53. Miyake Y, Togashi H, Tashiro M, Yamaguchi H, Oda S, Kudo M, Tanaka Y, Kondo Y, Sawa R, Fujimoto T, Machinami T, Ono A (2006) MercuryII-mediated formation of thymine − HgII − thymine base pairs in DNA Duplexes. J Am Chem Soc 128(7):2172–2173

    Article  CAS  Google Scholar 

  54. Huang H, Shi F, Li Y, Niu L, Gao Y, Shah SM, Su X (2013) Water-soluble conjugated polymer–Cu(II) system as a turn-on fluorescence probe for label-free detection of glutathione and cysteine in biological fluids. Sens Actuators, B 178:532–540

    Article  CAS  Google Scholar 

  55. Ros-Lis JV, García B, Jiménez D, Martínez-Máñez R, Sancenón F, Soto J, Gonzalvo F, Valldecabres MC (2004) Squaraines as fluoro − chromogenic probes for thiol-containing compounds and their application to the detection of biorelevant thiols. J Am Chem Soc 126(13):4064–4065

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 21275156) and the CAS Hundred Talents program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renjun Pei.

Ethics declarations

Disclosure

The authors report no conflict of interest in this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2377 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Jiang, G., Wang, Z. et al. DNA sequence-dependent fluorescence of doxorubicin for turn-on detection of biothiols in human serum. Anal Bioanal Chem 408, 683–693 (2016). https://doi.org/10.1007/s00216-015-9168-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9168-2

Keywords

Navigation