Skip to main content
Log in

Characterizing metabolic changes in human colorectal cancer

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) remains a leading cause of cancer death worldwide, despite the fact that it is a curable disease when diagnosed early. The development of new screening methods to aid in early diagnosis or identify precursor lesions at risk for progressing to CRC will be vital to improving the survival rate of individuals predisposed to CRC. Metabolomics is an advancing area that has recently seen numerous applications to the field of cancer research. Altered metabolism has been studied for many years as a means to understand and characterize cancer. However, further work is required to establish standard procedures and improve our ability to identify distinct metabolomic profiles that can be used to diagnose CRC or predict disease progression. The present study demonstrates the use of direct infusion traveling wave ion mobility mass spectrometry to distinguish metabolic profiles from CRC samples and matched non-neoplastic epithelium as well as metastatic and primary tumors at different stages of disease (T1–T4). By directly infusing our samples, the analysis time was reduced significantly, thus increasing the speed and efficiency of this method compared to traditional metabolomics platforms. Partial least squares discriminant analysis was used to visualize differences between the metabolic profiles of sample types and to identify the specific m/z features that led to this differentiation. Identification of the distinct m/z features was made using the human metabolome database. We discovered alterations in fatty acid biosynthesis and oxidative, glycolytic, and polyamine pathways that distinguish tumors from non-malignant colonic epithelium as well as various stages of CRC. Although further studies are needed, our results indicate that colonic epithelial cells undergo metabolic reprogramming during their evolution to CRC, and the distinct metabolites could serve as diagnostic tools or potential targets in therapy or primary prevention.

Colon tissue biopsy samples were collected from patients after which metabolites were extracted via sonication. Two-dimensional data were collected via IMS in tandem with MS (IMMS). Data were then interpreted statistically via PLS-DA. Scores plots provided a visualization of statistical separation and groupings of sample types. Loading plots allowed identification of influential ion features. Lists of these features were exported and analyzed for specific differences. Direct comparisons of the ion features led to the identification and comparative analyses of candidate biomarkers. These differences were then expressed visually in charts and tables

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. CA: A Cancer J Clin 64:9–29. doi:10.3322/caac.21208

    Google Scholar 

  2. American Cancer Society (2014) Colorectal cancer facts & figures 2014–2016. American Cancer Society, Atlanta

  3. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. doi:10.1016/j.cell.2011.02.013

    Article  CAS  Google Scholar 

  4. Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8:519–530

    Article  CAS  Google Scholar 

  5. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033. doi:10.1126/science.1160809

    Article  CAS  Google Scholar 

  6. Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13:472–482. doi:10.1016/j.ccr.2008.05.005

    Article  CAS  Google Scholar 

  7. Reeves R, Beckerbauer L (2001) HMGI/Y proteins: flexible regulators of transcription and chromatin structure. Biochim Biophys Acta 1519:13–29

    Article  CAS  Google Scholar 

  8. Fusco A, Fedele M (2007) Roles of HMGA proteins in cancer. Nat Rev Cancer 7:899–910. doi:10.1038/nrc2271

    Article  CAS  Google Scholar 

  9. Resar LMS (2010) The high mobility group A1 gene: transforming inflammatory signals into cancer? Cancer Res 70:436–439. doi:10.1158/0008-5472.CAN-09-1212

    Article  CAS  Google Scholar 

  10. Grade M, Hörmann P, Becker S, Hummon AB, Wangsa D, Varma S et al (2007) Gene expression profiling reveals a massive, aneuploidy-dependent transcriptional deregulation and distinct differences between lymph node-negative and lymph node-positive colon carcinomas. Cancer Res 67:41–56. doi:10.1158/0008-5472.CAN-06-1514

    Article  CAS  Google Scholar 

  11. Johnson KR, Lehn DA, Reeves R (1989) Alternative processing of mRNAs encoding mammalian chromosomal High-Mobility-Group Proteins HMG-I and HMG-Y. Mol Cell Biol 9:2114–2123

    CAS  Google Scholar 

  12. Reeves R (2001) Molecular biology of HMGA proteins: hubs of nuclear function. Gene 277:63–81

    Article  CAS  Google Scholar 

  13. Pedulla ML, Treff NR, Resar LM, Reeves R (2001) Sequence and analysis of the murine Hmgiy (Hmga1) gene locus. Gene 271:51–58

    Article  CAS  Google Scholar 

  14. Belton A, Gabrovsky A, Bae YK, Reeves R, Iacobuzio-Donahue C, Huso DL et al (2012) HMGA1 induces intestinal polyposis in transgenic mice and drives tumor progression and stem cell properties in colon cancer cells. PLoS One 7:e30034. doi:10.1371/journal.pone.0030034

    Article  CAS  Google Scholar 

  15. Chiappetta G, Avantaggiato V, Visconti R, Fedele M, Battista S, Trapasso F et al (1996) High level expression of the HMGI (Y) gene during embryonic development. Oncogene 13:2439–2446

    CAS  Google Scholar 

  16. Shah SN, Kerr C, Cope L, Zambidis E, Liu C, Hillion J et al (2012) HMGA1 reprograms somatic cells into pluripotent stem cells by inducing stem cell transcriptional networks. PLoS One 7:e48533. doi:10.1371/journal.pone.0048533

    Article  CAS  Google Scholar 

  17. Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A et al (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40:499–507. doi:10.1038/ng.127

    Article  CAS  Google Scholar 

  18. Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M, McLaughlin ME et al (2002) Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415:436–442. doi:10.1038/415436a

    Article  CAS  Google Scholar 

  19. Hristov AC, Cope L, Di Cello F, Reyes MD, Singh M, Hillion JA et al (2010) HMGA1 correlates with advanced tumor grade and decreased survival in pancreatic ductal adenocarcinoma. Modern Pathol 23:98–104. doi:10.1038/modpathol.2009.139

    Article  CAS  Google Scholar 

  20. Shah SN, Cope L, Poh W, Belton A, Roy S, Talbot CC et al (2013) HMGA1: a master regulator of tumor progression in triple-negative breast cancer cells. PLoS One 8:e63419. doi:10.1371/journal.pone.0063419

    Article  CAS  Google Scholar 

  21. Roy S, Di Cello F, Kowalski J, Hristov AC, Tsai H-L, Bhojwani D et al (2013) HMGA1 overexpression correlates with relapse in childhood B-lineage acute lymphoblastic leukemia. Leuk Lymphoma 54:2565–2567. doi:10.3109/10428194.2013.782610

    Article  CAS  Google Scholar 

  22. Yanagisawa BL, Resar LM (2014) Hitting the bull’s eye: targeting HMGA1 in cancer stem cells. Expert Rev Anticancer Ther 14:23–30. doi:10.1586/14737140.2013.859988

    Article  CAS  Google Scholar 

  23. Huso TH, Resar LM (2014) The high mobility group A1 molecular switch: turning on cancer—can we turn it off? Expert Opin Ther Targets 18:541–553. doi:10.1517/14728222.2014.900045

    Article  CAS  Google Scholar 

  24. Hirayama A, Kami K, Sugimoto M, Sugawara M, Toki N, Onozuka H et al (2009) Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res 69:4918–4925. doi:10.1158/0008-5472.CAN-08-4806

    Article  CAS  Google Scholar 

  25. Chan ECY, Koh PK, Mal M, Cheah PY, Eu KW, Backshall A et al (2009) Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS). J Proteome Res 8:352–361. doi:10.1021/pr8006232

    Article  CAS  Google Scholar 

  26. Tessem M-B, Selnaes KM, Sjursen W, Trano G, Giskeodegard GF, Bathem TF et al (2010) Discrimination of patients with microsatellite instability colon cancer using 1H HR MAS MR spectroscopy and chemometric analysis. J Proteome Res 9:3664–3670. doi:10.1021/pr100176g

    Article  CAS  Google Scholar 

  27. Chae Y-K, Kang W-Y, Kim S-H, Joo J-E, Han J-K, Hong B-W (2010) Combining information of common metabolites reveals global differences between colorectal cancerous and normal tissues. Bull Korean Chem Soc 31:379–383. doi:10.5012/bkcs.2010.31.02.379

    Article  CAS  Google Scholar 

  28. Piotto M, Moussallieh F-M, Dillmann B, Imperiale A, Neuville A, Brigand C et al (2008) Metabolic characterization of primary human colorectal cancers using high resolution magic angle spinning 1H magnetic resonance spectroscopy. Metabolomics 5:292–301. doi:10.1007/s11306-008-0151-1

    Article  Google Scholar 

  29. Mal M, Koh PK, Cheah PY, Chan ECY (2009) Development and validation of a gas chromatography/mass spectrometry method for the metabolic profiling of human colon tissue. Rapid Commun Mass Spectrom 23:487–494. doi:10.1002/rcm.3898

    Article  CAS  Google Scholar 

  30. Jordan KW, Nordenstam J, Lauwers GY, Rothenberger DA, Alavi K, Garwood M et al (2009) Metabolomic characterization of human rectal adenocarcinoma with intact tissue magnetic resonance spectroscopy. Dis Colon Rectum 52:520–525. doi:10.1007/DCR.0b013e31819c9a2c

    Article  Google Scholar 

  31. Moreno A, Rey M, Montane JM, Alonso J, Arús C (1993) 1H NMR spectroscopy of colon tumors and normal mucosal biopsies; elevated taurine levels and reduced polyethyleneglycol absorption in tumors may have diagnostic significance. NMR Biomed 6:111–118

    Article  CAS  Google Scholar 

  32. Moreno A, Arús C (1996) Quantitative and qualitative characterization of 1H NMR spectra of colon tumors, normal mucosa and their perchloric acid extracts: decreased levels of myo-inositol in tumours can be detected in intact biopsies. NMR Biomed 9:33–45. doi:10.1002/(SICI)1099-1492(199602)9:1<33::AID-NBM391>3.0.CO;2-G

    Article  CAS  Google Scholar 

  33. Nakagami K, Uchida T, Ohwada S, Koibuchi Y, Suda Y, Sekine T et al (1999) Increased choline kinase activity and elevated phosphocholine levels in human colon cancer. Jpn J Cancer Res 90:419–424

    Article  CAS  Google Scholar 

  34. Bertini I, Cacciatore S, Jensen BV, Schou JV, Johansen JS, Kruhoffer M et al (2011) Metabolomic NMR fingerprinting to identify and predict survival of patients with metastatic colorectal cancer. Cancer Res 72:356–364. doi:10.1158/0008-5472.CAN-11-1543

    Article  Google Scholar 

  35. Cheng Y, Xie G, Chen T, Qiu Y, Zou X, Zheng M et al (2012) Distinct urinary metabolic profile of human colorectal cancer. J Proteome Res 11:1354–1363. doi:10.1021/pr201001a

    Article  CAS  Google Scholar 

  36. Ritchie SA, Ahiahonu PWK, Jayasinghe D, Heath D, Liu J, Lu Y et al (2010) Reduced levels of hydroxylated, polyunsaturated ultra long-chain fatty acids in the serum of colorectal cancer patients: implications for early screening and detection. BMC Med 8:13. doi:10.1186/1741-7015-8-13

    Article  Google Scholar 

  37. Qiu Y, Cai G, Su M, Chen T, Liu Y, Xu Y et al (2010) Urinary metabonomic study on colorectal cancer. J Proteome Res 9:1627–1634. doi:10.1021/pr901081y

    Article  CAS  Google Scholar 

  38. Qiu Y, Cai G, Su M, Chen T, Zheng X, Xu Y et al (2009) Serum metabolite profiling of human colorectal cancer using GC−TOFMS and UPLC−QTOFMS. J Proteome Res 8:4844–4850. doi:10.1021/pr9004162

    Article  CAS  Google Scholar 

  39. Ludwig C, Ward DG, Martin A, Viant MR, Ismail T, Johnson PJ et al (2009) Fast targeted multidimensional NMR metabolomics of colorectal cancer. Magn Reson Chem 47:S68–S73. doi:10.1002/mrc.2519

    Article  CAS  Google Scholar 

  40. Li S, Zhao X, Wu Z, Li Y, Zhu L, Cui B et al (2013) Polymorphisms in arachidonic acid metabolism-related genes and the risk and prognosis of colorectal cancer. Fam Cancer 12:755–765. doi:10.1007/s10689-013-9659-2

    Article  CAS  Google Scholar 

  41. Nishiumi S, Kobayashi T, Ikeda A, Yoshie T, Kibi M, Izumi Y et al (2012) A novel serum metabolomics-based diagnostic approach for colorectal cancer. PLoS One 7:e40459. doi:10.1371/journal.pone.0040459

    Article  CAS  Google Scholar 

  42. Williams MD, Reeves R, Resar LS, Hill HH (2013) Metabolomics of colorectal cancer: past and current analytical platforms. Anal Bioanal Chem 405:5013–5030. doi:10.1007/s00216-013-6777-5

    Article  CAS  Google Scholar 

  43. Williams MD, Zhang X, Belton AS, Xian L, Huso T, Park J-J et al (2015) HMGA1 drives metabolic reprogramming of intestinal epithelium during hyperproliferation, polyposis, and colorectal carcinogenesis. J Proteome Res 14:1420–1431. doi:10.1021/pr501084s

    Article  CAS  Google Scholar 

  44. Dwivedi P, Schultz AJ Jr, HHH (2010) Metabolic profiling of human blood by high-resolution ion mobility mass spectrometry (IM-MS). Int J Mass Spectrom 298:78–90. doi:10.1016/j.ijms.2010.02.007

    Article  CAS  Google Scholar 

  45. Dwivedi P, Hill HH (2008) A rapid analytical method for hair analysis using ambient pressure ion mobility mass spectrometry with electrospray ionization (ESI-IMMS). Int J Ion Mobil Spectrom 11:61–69. doi:10.1007/s12127-008-0006-5

    Article  CAS  Google Scholar 

  46. Kaplan K, Dwivedi P, Davidson S, Yang Q, Tso P, Siems W et al (2009) Monitoring dynamic changes in lymph metabolome of fasting and fed rats by electrospray ionization-ion mobility mass spectrometry (ESI-IMMS). Anal Chem 81:7944–7953. doi:10.1021/ac901030k

    Article  CAS  Google Scholar 

  47. Dwivedi P, Puzon G, Tam M, Langlais D, Jackson S, Kaplan K et al (2010) Metabolic profiling of Escherichia coli by ion mobility-mass spectrometry with MALDI ion source. J Mass Spectrom 45:1383–1393. doi:10.1002/jms.1850

    Article  CAS  Google Scholar 

  48. May JC (2012) Encyclopedia of drug metabolism and interactions, Chapter 9, Gas-phase ion mobility-mass spectrometry (IM-MS) and tandem IM-MS/MS strategies for metabolism studies and metabolomics. vol. 5. 1st ed. Wiley, Hoboken

  49. Giles K, Pringle SD, Worthington KR, Little D, Wildgoose JL, Bateman RH (2004) Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun Mass Sperom 18:2401–2414. doi:10.1002/rcm.1641

    Article  CAS  Google Scholar 

  50. Malkar A, Devenport NA, Martin HJ, Patel P, Turner MA, Watson P et al (2013) Metabolic profiling of human saliva before and after induced physiological stress by ultra-high performance liquid chromatography–ion mobility–mass spectrometry. Metabolomics 9:1192–1201. doi:10.1007/s11306-013-0541-x

    Article  CAS  Google Scholar 

  51. Shah V, Castro-Perez JM, McLaren DG, Herath KB, Previs SF, Roddy TP (2013) Enhanced data-independent analysis of lipids using ion mobility-TOFMS E to unravel quantitative and qualitative information in human plasma: enhanced data-independent analysis of lipids. Rapid Commun Mass Spectrom 27:2195–2200. doi:10.1002/rcm.6675

    Article  CAS  Google Scholar 

  52. Ignatenko N, Gerner E, Besselsen D (2011) Defining the role of polyamines in colon carcinogenesis using mouse models. J Carcinog 10:10. doi:10.4103/1477-3163.79673

    Article  Google Scholar 

  53. Berdinskikh NK, Ignatenko NA, Zaletok SP, Ganina KP, Chorniy VA (1991) Ornithine decarboxylase activity and polyamine content in adenocarcinomas of human stomach and large intestine. Int J Cancer 47:496–498

    Article  CAS  Google Scholar 

  54. Elitsur Y, Moshier JA, Murthy R, Barbish A, Luk GD (1992) Polyamine levels, ornithine decarboxylase (ODC) activity, and ODC-mRNA expression in normal and cancerous human colonocytes. Life Sci 50:1417–1424

    Article  CAS  Google Scholar 

  55. Yerushalmi HF, Besselsen DG, Ignatenko NA, Blohm-Mangone KA, Padilla-Torres JL, Stringer DE et al (2006) Role of polyamines in arginine-dependent colon carcinogenesis inApcMin/+ mice. Mol Carcinog 45:764–773. doi:10.1002/mc.20246

    Article  CAS  Google Scholar 

  56. Bridoux MC, Ingalls AE (2010) Structural identification of long-chain polyamines associated with diatom biosilica in a Southern Ocean sediment core. Geochim Cosmochim Acta 74:4044–4057. doi:10.1016/j.gca.2010.04.010

    Article  CAS  Google Scholar 

  57. Linsalata M, Orlando A, Russo F (2014) Pharmacological and dietary agents for colorectal cancer chemoprevention: effects on polyamine metabolism (review). Int J Oncol. doi:10.3892/ijo.2014.2597

    Google Scholar 

  58. Yoo B, Kong S-Y, Jang S-G, Kim K-H, Ahn S-A, Park W-S et al (2010) Identification of hypoxanthine as a urine marker for non-Hodgkin lymphoma by low-mass-ion profiling. BMC Cancer 10:55. doi:10.1186/1471-2407-10-55

    Article  Google Scholar 

  59. Baenke F, Peck B, Miess H, Schulze A (2013) Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development. Dis Model Mech 6:1353–1363. doi:10.1242/dmm.011338

    Article  CAS  Google Scholar 

  60. Hopperton KE, Duncan RE, Bazinet RP, Archer MC (2014) Fatty acid synthase plays a role in cancer metabolism beyond providing fatty acids for phospholipid synthesis or sustaining elevations in glycolytic activity. Exp Cell Res 320:302–310. doi:10.1016/j.yexcr.2013.10.016

    Article  CAS  Google Scholar 

  61. Zaidi N, Swinnen JV, Smans K (2012) ATP-citrate lyase: a key player in cancer metabolism. Cancer Res 72:3709–3714. doi:10.1158/0008-5472.CAN-11-4112

    Article  CAS  Google Scholar 

  62. Ide Y, Waki M, Hayasaka T, Nishio T, Morita Y, Tanaka H et al (2013) Human breast cancer tissues contain abundant phosphatidylcholine(36∶1) with high stearoyl-CoA desaturase-1 expression. PLoS One 8:e61204. doi:10.1371/journal.pone.0061204

    Article  CAS  Google Scholar 

  63. Kurabe N, Hayasaka T, Ogawa M, Masaki N, Ide Y, Waki M et al (2013) Accumulated phosphatidylcholine (16:0/16:1) in human colorectal cancer; possible involvement of LPCAT4. Cancer Sci 104:1295–1302. doi:10.1111/cas.12221

    Article  CAS  Google Scholar 

  64. Ishikawa S, Tateya I, Hayasaka T, Masaki N, Takizawa Y, Ohno S et al (2012) Increased expression of phosphatidylcholine (16:0/18:1) and (16:0/18:2) in thyroid papillary cancer. PLoS One 7:e48873. doi:10.1371/journal.pone.0048873

    Article  CAS  Google Scholar 

  65. Kingsnorth AN, Lumsden AB, Wallace HM (1984) Polyamines in colorectal cancer. Br J Surg 71:791–794

    Article  CAS  Google Scholar 

  66. Balendiran GK, Dabur R, Fraser D (2004) The role of glutathione in cancer. Cell Biochem Funct 22:343–352. doi:10.1002/cbf.1149

    Article  CAS  Google Scholar 

  67. Traverso N, Ricciarelli R, Nitti M, Marengo B, Furfaro AL, Pronzato MA et al (2013) Role of glutathione in cancer progression and chemoresistance. Oxidative Med Cell Longev 2013:1–10. doi:10.1155/2013/972913

    Article  Google Scholar 

  68. Hussain SP, Hofseth LJ, Harris CC (2003) Radical causes of cancer. Nat Rev Cancer 3:276–285. doi:10.1038/nrc1046

    Article  CAS  Google Scholar 

  69. Kondo T, Iida T (1997) gamma-GCS and glutathione—new molecular targets in cancer treatment. Gan To Kagaku Ryoho 24:2219–2225

    CAS  Google Scholar 

  70. Carretero J, Obrador E, Anasagasti MJ, Martin JJ, Vidal-Vanaclocha F, Estrela JM (1999) Growth-associated changes in glutathione content correlate with liver metastatic activity of B16 melanoma cells. Clin Exp Metastasis 17:567–574

    Article  CAS  Google Scholar 

  71. Duthie SJ (2011) Folate and cancer: how DNA damage, repair and methylation impact on colon carcinogenesis. J Inherit Metab Dis 34:101–109. doi:10.1007/s10545-010-9128-0

    Article  CAS  Google Scholar 

  72. Jerby L, Wolf L, Denkert C, Stein GY, Hilvo M, Oresic M et al (2012) Metabolic associations of reduced proliferation and oxidative stress in advanced breast cancer. Cancer Res 72:5712–5720. doi:10.1158/0008-5472.CAN-12-2215

    Article  CAS  Google Scholar 

  73. Williams MD (2014) Discovering biochemical signatures of disease: metabolomics of colorectal cancer via ion mobility mass spectrometry. Doctoral Dissertation, Washington State University, Department of Chemistry

Download references

Acknowledgments

Support for this work came, in part, from the National Institutes of Health grant # 5R33RR020046 (H. Hill), #NIHR03 CA182679-01 and NIH R03 CA1646677 (L. Resar), the Maryland Stem Cell Research Fund (L. Resar), and from WSU Cancer Research Development Fund #17A-2412-0165 (R. Reeves). We would also like to sincerely thank Dr. Anders Merg, M.D., and Dr. Shane McNevin, M.D., both of Sacred Heart Medical Center, Providence Regional Cancer Center, Spokane, WA, for the surgical collection of tissue samples. Without their assistance, this work would not have been possible. Thanks also go to Ms. Joan Militon, RN, and Ms. Laura Nittolo, RN, also of Sacred Heart Medical Center, for coordinating the collection and documentation of tissue samples and obtaining appropriate pathology reports. Finally, we would like to thank Mr. Gary Johnson, of the WSU Spokane campus, for collecting and storing the tissue samples immediately after their collection.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raymond Reeves or Herbert H. Hill Jr.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 5874 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, M.D., Zhang, X., Park, JJ. et al. Characterizing metabolic changes in human colorectal cancer. Anal Bioanal Chem 407, 4581–4595 (2015). https://doi.org/10.1007/s00216-015-8662-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8662-x

Keywords

Navigation